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Sammendrag

Naturen har mange attraktive egenskaper som ingeniører håper på å en dag kunne
gjenskape i menneskeskapt teknologi for å revolusjonere databehandling. De inklud-
erer blant annet reproduksjon, læring, tilpasning og massiv parallellisering. Én bio-
inspirert struktur er den Cellulær Automaten (CA). Den kan gjenskape flercellede
organismers massive parallellitet, distribusjon og lokal samhandling.

På NTNU har tre masteroppgaver gått med til å lage en FPGA-plattform med
formål om å muliggjøre forskning på CAer i kombinasjon med kunstig evolusjon
og utvikling. Hovedprinsippet er at en genetisk algoritme (GA) brukes til å lage
utviklingsregler, som så blir brukt til å konstruere en CA, som til slutt brukes til å
beregne en fitnessverdi. Fitnessverdien blir så matet tilbake inn i GAen og prosessen
gjentas til en god løsning er funnet.

I forventning om å få ny maskinvare med en større FPGA, gikk den nyligste mas-
teroppgaven ut på å utnytte den økte ressursmengden til å bedre ytelsen og utvide
CAen til 3D. Men på grunn av produksjonsproblemer kunne dessverre ikke maskin-
varen leveres i tide. Derfor ble ikke en ny kommunikasjonsmodul implementert og
kun grunnleggende simuleringstester kunne utføres.

I det innledende spesialiseringsprosjekt til denne masteroppgaven ble en ny kommu-
nikasjonsmodul implementert og integrert i plattformen, som tillot skikkelig mask-
invareverifisering. Den viste at designet hadde mange problemer, inkludert feilende
instruksjoner, stor bruk av utdaterte elementer og separate versjoner for 2D og 3D.
I denne masteroppgaven har derfor hele plattformen blitt revidert og gjenoppbygd.

Den nye plattformen løser alle store problemer med den gamle og legger til nye
forbedringer som mer avansert kontrollflyt og et adaptivt programvare API. Flere
og mer fininstillbare byggparametre tillater større justering av ytelse og gjør det
mulig å få plass til større CAer på FPGAen.

Funksjonaliteten til alle instruksjoner er verifisert i maskinvare og demonstrert med
et program som lager repliserende strukturer. Dette viser at plattformen er komplett
og klar for bruk til forskning. Et klokkeproblem med kommunikasjonsmodulen fører
for tiden til at hele plattformen kjører på halv hastighet, men viss det fikses vil den
rå CA ytelsen bli 35% bedre i 2D og 300% bedre i 3D sammenlignet med det forrige
designet. For disse ytelseskonfigurasjonene er ressursbruken vesentlig mindre i 2D
og omtrent lik i 3D.
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Abstract

Nature has many attractive properties that engineers hope to once incorporate into
man-made technology to revolutionize computing. Properties include, among other
things, reproduction, learning, adaption and massive parallelism. One bio-inspired
computational structure is the Cellular Automaton (CA), which can mimic the mas-
sively parallel, distributed and locally interactive nature of multi-cellular organisms.

At NTNU, three master theses have gone into creating a Field-Programmable Gate
Array (FPGA) platform whose purpose is to allow research on CAs in combination
with artificial evolution and development. The main principle is that a Genetic
Algorithm (GA) is used to create development rules, which are then used to build a
CA, which can finally be used to compute a fitness value. The fitness value is then
fed back fed into the GA and the process is repeated until a good solution is found.

In expectation of new hardware with a larger FPGA, the purpose of most recent
thesis was to take advantage of increased resources to improve speed and to ex-
tend the CA into 3D. However, the hardware failed to be delivered on time due to
manufacturing problems. This caused the new communication module to remain
unimplemented and only allowed rudimentary simulation testing.

In a specialization project leading up to this thesis, a new communication module
was implemented and integrated into the platform, allowing proper hardware veri-
fication. It showed that the design had many issues, including failing instructions,
extensive use of outdated features and separate versions for 2D and 3D CAs. In this
thesis, the entire platform has therefore been revised and rebuilt.

The new platform solves all major issues with the previous and adds further enhance-
ments such as more advanced control flow and an adaptive software API. More and
better fine-tunable build parameters allow wider adjustment of performance and
make it possible to fit larger CAs within the FPGA.

The functionality of all instructions is verified in hardware and a program that
creates replicating structures is demonstrated, proving that the platform is complete
and ready to be used for research. A clocking issue with the communication module
is currently reducing the entire platform to half speed, but if fixed, the raw CA
performance will be 35% higher in 2D and 300% higher in 3D compared to the
previous design. For those performance configurations, resource usage is significantly
lower in 2D and equivalent in 3D.
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Chapter 1

Introduction

It is predicted that conventional CPU architectures will be unable to continue to
scale in about a decade [8]. Many engineers are therefore investigating entirely dif-
ferent technologies in hope of finding viable alternatives. Some have looked towards
nature; at biological organisms whose complexities far outweigh what humans have
so far been able to engineer. Additionally, biological systems exhibit a wide range
of characteristics that could possibly revolutionize computing, such as reproduction,
learning, adaption, massive parallelism, graceful degradation, self-assembly and self-
repair.

This has formed the field of bio-inspired computation, where the principles of nature
in the form of artificial evolution, development and learning are used in the creation
of computer systems. Some focus on mimicking the structure of the human brain,
in the form of artificial neural networks, to create robot controllers [5]. Others focus
on the emergent behaviors from thousands or millions of individual cells in Cellular
Automata (CAs).

Bio-inspired computing has been an area of research at NTNU for more than a
decade. In 2002, NTNU invested in dedicated FPGA hardware for the purpose
of creating a platform for experimentation with CAs in combination with artificial
evolution and development.

The initial work was done by Djupdal, and then extended by Aamodt shortly after.
The CA was implemented as a matrix of sblocks, a form of reprogrammable CA
cells, connected to a development unit capable of simulating cell growth and change.
The hardware platform was connected to and controlled by a computer over a PCI
connection.

A general use-case for the platform is to have the computer run a Genetic Algorithm
(GA), where the genotype represents the development rules and initial CA state.
Development is then used to create a phenotype in the form of a CA structure,
which can be used for computation and to produce a fitness value. The fitness value
is then fed back into the GA until an acceptably good solution is found.
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2 CHAPTER 1. INTRODUCTION

In expectation of new hardware with a larger FPGA and faster PCI Express con-
nection, Støvneng refurbished the design in 2014. He took advantage of the added
resources to greatly improve the performance of the platform, giving a speedup of 4
or more for many operations. Additionally, he extended the CA into 3D and added
a Discrete Fourier Transform (DFT). However, since the hardware did not arrive in
time, the new design was only tested in simulation and the communication interface
was not upgraded.

The task of the specialization project leading up to this thesis was to finish the
extended platform by implementing a new PCI Express communication module,
and to verify the platform’s functionality in hardware. The verification process
uncovered many issues, some of which made the platform unusable, and others
which made debugging and fixing very difficult. This led to the decision of revising
and rebuilding the entire platform from scratch in this thesis.

1.1 Outline

The thesis is organized as follows:

• Chapter 2 – Theoretical background, technology and related work. This chap-
ter gives an overview of the relevant research that this thesis is based on and
the technology which is used.

• Chapter 3 – Previous designs and implementations. This chapter states a brief
history of the platform that this thesis builds on and the main issues that needs
improvement.

• Chapter 4 – Development platform and setup. This chapter describes the
hardware and software systems used in this thesis and their setups.

• Chapter 5 – Implementation details. This chapter provides in-depth descrip-
tions of all parts of the rebuilt and enhanced platform.

• Chapter 6 – System verification. This chapter asserts the functionality of the
platform through tests and an example program.

• Chapter 7 – Performance, challenges and future work. This chapter analyzes
the system’s performance, discusses difficulties and compromises during devel-
opment, and mentions possible improvements.

• Chapter 8 – Concluding remarks. The final chapter concludes this paper
by reviewing the new platform, its performance and its potential for future
applications.

• Appendix A – Functional tests. This appendix briefly describes the test pro-
grams that together provide test coverage of all instructions.
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• Appendix B – Attachment index. This appendix lists the attached files com-
prising the hardware design and software API.

• Appendix C – Instruction Set Architecture. This appendix provides a complete
specification of all instructions, the rule format and the LUT format.

• Appendix D – Specialization project. This appendix holds the paper that
led up to this thesis, in which a PCI Express-based communication module is
implemented and integrated into the previous design.
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Chapter 2

Background

The field of bio-inspired computing encompass a wide variety of technologies that
take advantage of different natural concepts. In [31], Sipper et al. partition these
technologies into a space along three axes (illustrated in Figure 2.1):

• Phylogeny: Temporal adaption to the environment caused by mutation and
reproduction. It is named after the evolution of the species.

• Ontogeny: Growth through cell division or equivalent methods. An example
is a zygote (“mother cell”) replicating to form a larger multi-cellular organism.

• Epigenesis: Adaptation through a lifetime of interactions with the environ-
ment. This can loosely be defined as learning.

Figure 2.1: The POE model for bio-inspired hardware.

This thesis focuses on the first two axes, phylogeny and ontogeny, in the form of
artificial evolution and development. This chapter goes into details about the two
concepts, some of the technologies that can take advantage of them and other tech-
nologies that are used in this thesis.
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2.1 Evolution

Evolution is the natural process that over time advances species by letting the fit
survive to reproduce while the less fit perish. Essentially, each generation includes
slight variations to gradually create a species that is more adapted to the envi-
ronment by having the fit traits passed on to subsequent generations. In nature,
this process effectively creates more fit solutions to the problem of life, which is to
reproduce in a changing environment.

Similarly, artificial evolution can be used by computers to evolve solutions to compu-
tational problems instead of manually creating them, by the means of Evolutionary
Algorithms (EAs) [20]. EAs can search millions of possible solutions, guided by
their fitness scores, and find solutions that humans would never have imagined. In
contrast to nature, where years usually pass between each generation, powerful com-
puters can create hundreds of generations every second and find good solutions in
relatively short time.

EAs have been successfully applied to many scientific tasks. For example, NASA has
had great success with evolving antenna designs [21], and Floreano and Mondada
have evolved robot controllers with homing navigation [9]. An interesting feature is
that EAs can find ways to exploit hardware in ways that human designers cannot
comprehend [34]. This can be due to complex parallel interactions, or usage of
properties that are not fully understood [35].

2.1.1 Genetic Algorithms

A very common type of EA is the Genetic Algorithm (GA) presented in [16]. It
represents each solution as a genotype, a binary string used as a blueprint to create
the solution itself, the phenotype. The genotype is comparable to nature’s DNA,
and it is this genetic material which is modified in the evolutionary process.

Figure 2.2: A genetic algorithm. The cycle is broken when the fitness is above a
given threshold.

The GA process is shown in Figure 2.2 and works as follows: First, a base population
with random genotypes is generated. Then, each phenotype is constructed and
evaluated using a fitness function. If a solution has a fitness score above a set
threshold, the process stops. Otherwise, a new population is created by selecting
solutions with high fitness scores, crossing their genotypes, and mutating the results,
before repeating the process.
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2.2 Development

The process that transforms a genotype into a phenotype is called development, and
can be regarded as a form of decompression algorithm [18]. In nature, this process
is seen when a single cell transforms into a more complex multicellular organism,
as visualized in Figure 2.3. Unlike with a pure decompression algorithm however,
biological systems also use information about their environments to tailor themselves
to them. This is known as plasticity.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 2.3: Example of cells replicating and changing to develop a larger and more
complex entity.

Development is needed because a complete specification of a complex organism re-
quires much more information than practically can be stored; it is several orders of
magnitude greater than that of one cell and its development rules. Plasticity and
self-repairing abilities are merely bonuses, but have shown to be highly valuable
properties. For the same reasons, artificial development is lucrative for building
more complex computer systems that are also fault-tolerant and adaptable.

Development is never necessarily “finished”; it can continue during the entire lifes-
pan of the system. Over time, a dynamical system tends to end up in a state of
equilibrium, an attractor [19]. The attractor may be a single state, or a series of
states that repeat to create a cycle. External interactions, for example suffering
damage, will however likely cause the system to break from its current attractor in
search for another. If the system ends up providing the same functionality, albeit
possibly with a different structure, it is said to have self-repairing abilities, which is
a lucrative property in the eyes of hardware engineers.

2.2.1 Lindenmayer Systems

Perhaps the most known and widely used artificial development systems are Lin-
denmayer Systems (L-Systems). They were introduced by biologist and botanist
Lindenmayer in 1968 to describe the growth of plants and fungi [24]. The L-System
is a form of parallel generative grammar; starting with an axiom, a string is built
by iteratively applying all the grammar rules in parallel. The string is a representa-
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tion of the structure of the object; each character symbolizes a branch, twist, turn,
stretch or other feature.

(a) Iteration 0 (b) Iteration 2 (c) Iteration 4

(d) Iteration 6 (e) Iteration 8 (f) Iteration 10

Figure 2.4: Heighway dragon curve generated with L-System using [3]. The starting
string is FX and the rules are X → XRY FR and Y → LFXLY where F is
forward, R is a right turn and L is a left turn.

In addition to plants, L-Systems are also suitable for generating other structures
that grow and branch. Figure 2.4 shows how they can be used to generate fractals,
specifically the dragon curve [10]. It is the pattern that emerges when a piece of
paper is folded many times and then all folds opened to 90 degree angles. The
corresponding L-System uses only two rules, and is a testament to how very simple
development rules can create outstandingly complex shapes. L-Systems have also
been applied to other tasks, such as music composition [25].

2.3 Cellular Automata

A Cellular Automaton (CA) is a computational structure made up of vast numbers
of very simple functional elements called cells that are arranged in a grid. Each cell
contains a state and is connected to a handful of nearby cells to form neighborhoods.
At given time intervals the cells then update their states based on transfer functions
over the states in their neighborhoods.1

CAs are attempts to mimic the structures found in biological lifeforms, where com-
plex results emerge from interactions between many simple cells. The key principles
are massive parallelism, local interactions and simple computational units. As seen
in Figure 2.5, this is the directly opposite paradigm to the general-purpose serial

1 CAs are specific cases of Random Boolean Networks [14].
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architecture that is common in computers today. However, CAs have been shown
to be Turing complete [4, 36], and can therefore perform any task.

Cellular
computing

Partially connected
neural networks

Fully connected
neural networks

Distributed
computing

Shared-memory
parallel computing

General-purpose
serial architecture

Finite-state
machinesSimpleComplex
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Figure 2.5: Graphical representation of how different computing paradigms relate
with regards to computing principles. (Reprinted from [30])

CAs are attractive due to their inherent robustness and scalability when paired
with development. In the event of broken cells, signals can simply be rerouted,
and to increase the performance, extra cells can be added and the program grown;
local communication ensures that there are no bottlenecks. This greatly contrasts
modern processors where a broken part normally renders the entire chip unusable,
and adding more cores are of limited benefit due to the shared-memory architecture.
Increasing the clock rate is no longer an option either, due to the fixed power budget.

A major challenge with CAs is programming. CAs compute by emergence using
massive parallelism, while humans mostly solve problems serially [27]. This makes it
near impossible for humans to construct programs, unless for very simple problems.
Genetic Algorithms are therefore often used.

Other major challenges are the representation of input and parsing of output. Both
arise due to the CA’s distributed nature. For output, the Discrete Fourier Transform
(DFT) over the number of cells with a given state appears promising however [2].

CAs have been also been used in various research. They have been environments
for simulating lifeforms and creating replicating machines [36]. A very popular life
simulator is Conway’s Game of Life [11].

There are many variations of CAs, which are discussed in great detail in [30]. Fol-
lowing is a brief summary: Cell states can have discrete or continuous values. The
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transfer function can be represented by exhaustive enumeration or a parameterized
expression. The cells may be uniform by having the same transfer function, or non-
uniform. Cell updates can be synchronous or asynchronous, and in the latter case
the CA can be either deterministic or nondeterministic depending on the order in
which cells update. The CA may be fully specified by direct programming or adap-
tively evolved using a EAs. Finally, there are numerous schemes that can be used
to connect cells together to form neighborhoods.

In this thesis, only a specific form of CA is used: Discrete, exhaustively enumerated,
non-uniform, synchronous and deterministic. It is possible to use direct program-
ming, but there are systems in place for adaptive evolution.

2.3.1 Neighborhoods

An important property of CAs is how cells are connected to form neighborhoods,
as this defines what data will be available for the transfer functions and therefore
changes the way data flow through the machine. It is common to connect directly
adjacent cells, and sometimes those diagonally adjacent. Cells do not have to be
part of their own neighborhoods, but it is common. The von Neumann neighborhood
shown in Figure 2.6 is commonly used for 2D CAs, and is also used by the design in
this thesis. It includes the directly adjacent cells; north, south, east and west; and
the cell itself.

North

West Center East

South

Figure 2.6: The von Neumann neighborhood in a 2D CA. The cell states are shared
with all directly adjacent cells.

The von Neumann neighborhood is easily extendable to 3D by adding the cells di-
rectly above and below to the neighborhood. The extra dimension allow more com-
plex signal routing since the signals can cross over or under each other, which hope-
fully allows more complex computation. It should however be possible to achieve
the same complexity in fewer dimensions by increasing the neighborhood size, but
that would likely require much more advanced transfer functions.
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2.3.2 Complexity Classes

Wolfram observed that some CAs developed complex pattern while others decayed
into uniformity or chaos. He therefore developed a set of four classes to group them
based on their emergent behavior [37]:

• Class 1 – Uniform: The CA quickly results in a homogeneous state, regard-
less of initial condition. It lacks both the means to store data and perform
computation.

• Class 2 – Repetitive: The CA develops both periodic and static data struc-
tures. However, after a number of cycles the states begin to repeat. This
makes complex computation impossible.

• Class 3 – Chaotic: The CA is not held back by repetition as with class 2, but
the patterns are so chaotic that it is unable to support data structures.

• Class 4 – Complex: The CA supports complex data structures and has no
discernible repetition. It should be capable of universal computation.
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I V

1.00.0 ?

Figure 2.7: The location of Wolfram’s complexity classes in λ space. (Adapted
reprint from [23])

Langton attempted to connect Wolfram’s classes to transfer function complexity
[23]. For this he used a measure called λ, which essentially determines the inverse
ratio of rules that cause a cell to transition into any given state. This means that
all transitions are to a given state if λ = 0.0, while there are no transitions to any
state if λ = 1.0. His findings, displayed in Figure 2.7, show that class 4 resides in a
phase transition between the order of class 2 and the chaos of class 3. This is known
as “The Edge of Chaos”.

2.3.3 Evolution and Development in CAs

The problem with using EAs to program CAs is that the search spaces are vast,
even for the simplest binary CAs (2Neighborhood·Cells configurations2). However, by
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adding development to the process, the search spaces can be dramatically reduced
to manageable sizes while gaining other benefits such as scalability and robustness.

GA

CA

Rules

Fitness

Dev

Structure

Figure 2.8: CA system with evolution and development.

The essence of the process is illustrated in Figure 2.8: The GA defines development
rules. Development is then used to define a CA structure. Finally, the CA is
executed to produce a fitness score that is fed back into the GA.

2.4 FPGA

A Field Programmable Gate Array (FPGA) is a type of reconfigurable hardware. It
can implement any desired logical operation by configuring and connecting a num-
ber of lookup tables (LUTs) and flip-flop registers (FFs). FPGAs can also contain
dedicated blocks for addition, multiplication, storage, and other functionality. The
resources are grouped into configurable logic blocks (CLBs), which through a net-
work of interconnects can be connected to each other or input/output (I/O) pins.
An example of this structure is shown in Figure 2.9. Note that modern FPGAs
consists of thousands of CLBs and hundreds of I/O pins [40].

FPGAs have been the subject of bio-inspired research due to their reconfigurability,
and several researchers have been successful in using EAs to evolve working elec-
tronic circuits [22, 34]. However, the resulting circuits have often ended up using
intrinsic properties of the silicon and been very sensitive to environmental changes.
A problem with using modern FPGAs is that some configuration bit strings can de-
stroy the FPGA by creating short-circuits [38, 42]. This means that the bit strings
can not be used directly as the genotype without complicated tests to discard those
that are dangerous.

The regular structure of an FPGA makes it well suited as the basis for implementing
CAs however, especially 2D ones.

2.4.1 Sblock

The sblock was introduced as part of a new EA-friendly FPGA architecture in [17].
The architecture is a non-uniform CA with a von Neumann neighborhood, where

2 The number of possible configurations for a relatively small 4x4x4 CA dwarfs the estimated
number of particles in the universe.
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Figure 2.9: High-level block diagram of an FPGA. An array of CLBs and I/O pins
are connected by a network of interconnects.

the transfer function of each cell is independently configurable at run-time. The
cells, known as sblocks, are very simple structures; they consist of a configurable
LUT and a FF, as shown in Figure 2.10.

Figure 2.10: Detailed block diagram of an sblock. The LUT can be reconfigured
on-the-fly to implement any logical function.

The greatest benefit of using sblocks in research using EAs is that there is no risk
of damage or exploitation of intrinsic properties in the silicon. Additionally, the
simple structure and hardwired signal routing allows for very efficient area usage.
The likelihood of a mass-produced sblock-FPGA arriving on the market in the near
future is slim. However, it is possible to implement it virtually within another
FPGA, as is done in this thesis.

2.5 PCI Express

The PCI Express interface was designed to tackle the rising troubles with clocked
parallel buses like PCI. The problem with such buses is that the clock speed can
not be increased beyond a given threshold, as the slightly different lengths of the
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wires causes data to arrive at slightly different times. Reducing the clock period to
less than the variation in arrival time means the data will become corrupted. This
problem is exacerbated with larger bus sizes.

PCI Express is therefore based on serial communication over differential pairs (lanes3)
without the need for a reference clock [29]. This allows an extremely fast clock
speed compared to a parallel bus, and much greater bandwidth in total. PCI Express
consists of three layers; the physical layer, the data link layer and the transaction
layer, structured as shown in Figure 2.11.

Data Link Data Link

RX TX

Logical Sub-block

Electrical Sub-block

Physical

RX TX

Logical Sub-block

Electrical Sub-block

Physical

Transaction Transaction

Figure 2.11: High-level diagram showing the layered structure of PCI Express.
(Reprinted from [29])

The transaction layer’s primary responsibility is the creation and parsing of trans-
action layer packets (TLPs). TLPs are used to trigger events or start various trans-
actions, most commonly to initiate read and write requests4. Most requests entail
the return of a completion TLP containing the requested data or other information.
TLPs consists of multiple 32-bit double words (DW), where the first is a common
header describing the type of packet.

The data link layer ensures integrity by adding error detection codes to outgoing
TLPs and performing error detection and correction on incoming TLPs. It is also
responsible for retransmission if corruption occurs.

The physical layer is responsible for serialization and deserialization of the data
stream. Each byte is padded with two extra bits (8b/10b encoding) to allow clock
recovery.

3 PCI Express operates in full duplex mode, which means that each lane has an independent
differential pair in each direction. 1, 2, 4, 8, 16 or 32 lanes are supported, but data is striped and
thus still transmitted serially.

4 Read and write requests are directed at one of up to six base address registers (BARs). They
represent internal memory areas that can be anywhere from a few bytes to several gigabytes in
size.
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2.6 Related Work

This section describes work performed by others, which is related to that performed
in this thesis but not directly applicable to it.

2.6.1 CAM-8

The Information Mechanics Group at MIT Laboratory for Computer Science has
had a focus the question “How can computation and computers best be adapted
to the constraints and opportunities afforded by microscopic physics?” This has
led to more than a decade of study of CAs, as their fine-grained computation with
local interconnectivity are particularly good candidates for micro-physical efficiency.
To this end, they have created CA Machines (CAMs) that aim to use common
computer parts in smart arrangements to provide CA computation performance
akin to modern supercomputers. [26] describes their eighth iteration, known as the
CAM-8.

DRAM
cell
array

SRAM
lookup
table

(a) A single processing node (b) Spatial array of CAM-8 nodes

Figure 2.12: CAM-8 system diagram. (Reprinted from [26])

The CAM-8 implements a discrete, exhaustively enumerated, uniform, and syn-
chronous 3D CA split over multiple nodes that run in parallel. Any number of
nodes can be connected to form a CA of desired size, and an 8-module prototype
showed to be on par with regular supercomputer simulations. As illustrated in Fig-
ure 2.12, each node contains DRAM that potentially holds millions of cells and an
SRAM that holds the LUT for the current program. Within each node, cells are
updated in sequence, making it a semi-parallel machine. This is a trade-off that
compromises performance for the benefit of massively increased CA size and the
ability to use common hardware. For 1-bit cell states, the prototype is capable of
3 · 109 cell updates per second and can fit up to 5 · 108 cells.
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2.6.2 CAM-Brain Machine

In [5], de Garis et al. introduces the CAM-Brain Machine (CBM); an FPGA-based
platform that implements a CA-based neural network that is evolved using a GA.
It is part of de Garis’ “Artificial Brain Project”, which goal is to build an artificial
brain with 1 billion neurons. The CBM is a stepping stone in the right direction,
and allows the formation an artificial brain with nearly 75 million neurons in a CA
of 843 million cells. It consists of up to 64640 modules, each containing 24x24x24
cells split over 72 FPGAs, of which 1152 cells can be neurons. Modules are evolved
separately using the Collect and Distribute based neural network model from [13],
and then connected by human design.

Brain building is still mostly in the “proof of concept” phase, so to attract atten-
tion to further research they designed a cute life-sized robot kitten that would be
controlled by the CBM. The work to design and evolve it’s brain architecture was ex-
pected to continue well into the 2000s, but was halted when the research institution
went bankrupt in 2001 [15].

2.6.3 BioWall

The Logic Systems Laboratory at the Swiss Federal Institute of Technology have
been working on bio-inspired hardware systems for many years, mainly focusing on
the ontogenetic axis through embryonics. [33] describes a machine whose purpose
is to convey the principles of embryonics to the public through visual and tactile
interactions. The machine, depicted in Figure 2.13, is named BioWall due to its
bio-inspired nature and sheer size at 5.3x0.6x0.5 meters3.

Figure 2.13: The BioWall, running BioWatch. (Reprinted from [28])

The BioWall is made up of 3200 identical units which can be seen an artificial
molecules that can be combined to form cells. Each unit consists of an FPGA, 64
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LEDs and a touch sensor, allowing users to interact with the surface by touching it
and receiving immediate response from the LED display.

The main application for the screen is the BioWatch, an organism capable of count-
ing hours, minutes and seconds. It is used to demonstrate the growth and self-repair
capabilities of the system. 20 x 25 molecules/units are arranged into cells, each re-
sponsible for one digit. Users can then touch molecules to disable them, forcing the
cell to reroute its functionality to a neighboring molecule.

The BioWall’s cellular structure is well suited for many other bio-inspired applica-
tions as well. Examples are 2D CAs such as the Game of Life [11], self-replicating
structures and artificial neural networks.
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Chapter 3

Previous Work

This thesis continues to build on the Cellular Automata Research Platform (CARP),
which is the result of three previous master theses at NTNU. The original imple-
mentation was made by Djupdal in 2003. It was then extended with a range of
various output methods by Aamodt in 2005. Finally, it was further extended and
optimized in expectation of new hardware by Støvneng in 2014.

GA

CA

Rules

Fitness

Dev

FPGA

Host

Figure 3.1: General system design.

The platform is more or less a “proof of principle” for how a CA can be combined with
development and evolution to create a powerful bio-inspired system. The general
system design, which is based on the setup in Section 2.3.3, is depicted in Figure 3.1:
An FPGA implements the CA and development process while evolution is performed
by a host computer.

3.1 Djupdal

In 2002, NTNU invested in a CompactPCI computer with a NallaTech BenERA
FPGA board to be used for research within the field of evolutionary hardware. The
task of developing a platform for the system, based on a matrix of sblocks, fell to
Djupdal [7].

19
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An overview of the resulting hardware platform is shown in Figure 3.2. It consists
of the SBlock Matrix (SBM), Block RAM (BRAM) for storing the state and type
of each cell, a development unit, control logic, and a PCI communication unit.

Figure 3.2: High-level block diagram of the hardware platform after Djupdal’s orig-
inal work.

The system is meant to be controlled by a computer running a genetic algorithm.
A common flow of operation is to initialize the system with the genotype, develop
it into its phenotype, step the SBM, and send the new states back to the computer.
The computer then uses the newly received state data to calculate a fitness score.

The system is initialized by writing states and types to BRAM A, in addition to
storing development rules and LUT conversion rules. Then development can be
performed by reading cell types from BRAM A1, testing development rules, and
writing the (possibly changed) types to BRAM B. The development unit tests 8
rules on 2 cells each cycle in raster order. Optionally, the BRAMs can be logically
swapped and further development performed. The SBM can then be configured by
translating the types in BRAM B into LUT entries according to the LUT conversion
rules, before being stepped for a desired amount of cycles. Afterwards, the new states
in the SBM can be read back into BRAM B, swapped into BRAM A, and sent to
the computer.

The design is split into two clock domains; the communication unit uses 40 MHz to
be able to interface with PCI, while the rest uses 80 MHz for higher performance.

1 After the first 8 rules have been tested on all cells, center cell types are read from BRAM B
instead. This is needed to prevent the result of a rule in an earlier iteration from being deleted if
no rules trigger in a later iteration.
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3.2 Aamodt

There was one major bottleneck in the original design. To calculate the fitness of an
individual, the state of each cell had to be transferred to the computer over the PCI
interface. Having a dedicated hardware unit would greatly improve the performance.
Additionally, it was desired to have more information about the development process.
The task of realizing this fell to Aamodt [1].

An overview of the hardware platform with Aamodt’s additions is shown in Fig-
ure 3.3. The additions consists of a Run-Step Function (RSF) that calculates the
number of live cells, BRAM to store the numbers, a fitness function, and two infor-
mation outputs from the development unit.

Figure 3.3: High-level block diagram of the hardware platform after Aamodt’s work.
Additions are highlighted in green.

The rule vector BRAM stores lists of which rules were triggered and not for the last
256 development phases. The lists are implemented as bit vectors where each bit
represents the status of a rule for a single development phase. The development step
BRAM is more detailed; it stores which rule was triggered for each cell. However,
it only has storage space for one development phase.
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The RSF calculates the number of live cells after each SBM step by using a large
adder tree. The numbers are stored in Run-Step BRAM for later usage by the fitness
function, which is replaceable.

3.3 Støvneng

In expectation of receiving new hardware with a larger and faster FPGA, there was
a demand to optimize the platform by taking advantage of the increased resource
pool. Extending the SMB into the 3D was also a lucrative thought, as it allows more
complex signal pathways to form within it. A Discrete Fourier Transform (DFT)
was also desired for interpretation of the RSF data; it should give very useful data
according to Berg’s research [2]. The task of realizing this was taken on by Støvneng
[32].

Figure 3.4: High-level block diagram of the hardware platform after Støvneng’s
work. Additions are highlighted in green, and optimizations and 3D modifications
in orange.

An overview of the hardware platform with Støvneng’s additions and optimizations



3.4. ISSUES 23

is shown in Figure 3.4. The only addition is the DFT, but nearly all units has been
optimized, yielding a speedup of 4 for many operations.

Unfortunately, due to challenges with manufacturing, Støvneng was unable to get
hold of the new hardware for the duration of his project. The system was therefore
only verified in simulation, and the PCI communication unit was not upgraded for
the PCI Express connection on the new board.

3.4 Issues

The original idea was to complete Støvneng’s design by implementing the PCI Ex-
press module and driver in the specialization project leading up to this thesis, and
then proceed to use the platform for research. However, after successful integra-
tion, verification of the platform revealed multiple serious issues, which are listed in
Table 3.1. The full project report can be read in Appendix D.

Type Issue
Severe Many instructions fail or do not follow specification
Severe The code is unnecessarily complex, making debugging nearly impossible
Minor Outdated features are extensively used (tristate buffers and global resets)
Minor Two different hardware designs and software APIs (2D and 3D)
Minor DFT twiddle factors are generated by an external python program
Minor It is impossible to retrieve the hardware parameters in the software API
Minor There is almost no control flow available in the hardware design

Table 3.1: Issues with the existing design.

Starting from a blank slate would allow the platform to be made more modular,
configurable, and maintainable. Also, it would be possible to unify the 2D and 3D
designs and remove external dependencies. This led to the decision of rebuilding
the entire platform from scratch in this thesis.
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Chapter 4

Development Platform

The new hardware originally intended for Støvneng’s thesis was still unavailable at
the beginning of the specialization project. Therefore, the Spartan-6 SP605 Eval-
uation Platform was ordered as replacement hardware. It has an FPGA from the
same product line, but substantially smaller in size. This meant that the archi-
tecture would be the same, but there would be around 70% less logic resources to
work with. However, this should not be a significant problem, as the hardware de-
sign can be scaled down by reducing the size of the sblock matrix or the system’s
performance.

4.1 Spartan-6 SP605 Evaluation Platform

The Spartan-6 SP605 Evaluation Platform is essentially a circuit board with the
Spartan-6 LX45T FPGA wired to every useful peripheral imaginable. It has con-
nections for PCI Express1, Ethernet, DVI, USB, flash card, JTAG, LEDs, switches,
and more. However, the only peripherals utilized in this paper are PCI Express and
JTAG. An overview of the system is shown in Figure 4.1.

The Spartan-6 is Xilinx’ most cost-effective FPGA series. Its CLBs are divided into
two independent slices, one of which is connected to a carry-chain. In addition to
the standard slices which contain mainly LUTs and FFs, the Spartan-6 also contains
a handful of specialized Digital Signal Processing (DSP) slices. These are optimized
for pipelined wide multiplications and additions, which are often required in signal
processing.

1 Even though the PCI Express finger has lines for power, they are not connected on the SP605.
This means an external power source has to be connected.
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Figure 4.1: High-level block diagram of the SP605 and its peripherals. Peripherals
utilized in this paper are highlighted in gray. (Modified reprint from [39])

4.2 Hardware Setup

Due to the experimental nature of building a new hardware design, two computers
were used in this project, as shown in Figure 4.2. One is the main development
workstation, used for coding and synthesis; it has a JTAG connection to the SP605
over USB, which allows it to upload new designs. The other is the host for the
SP605, which is mounted in a PCI Express expansion slot.

Figure 4.2: High-level block diagram of the hardware setup.

The setup allows a new design to be uploaded and tested on the SP605 without
disrupting the workflow of the main workstation due to the power-cycle required to
reset the PCI Express connection after a new design has been uploaded.

The switch and jumper configurations of the SP605 are set to factory defaults per
[39], with the exception of SW1 which is set to 10 (M0=1 and M1=0).
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4.3 Software Setup

The operating systems used on the computers have varied, without complications,
between Linux Mint 16, Linux Mint 17 and Manjaro during the lifespan of the
project. Linux Mint and its base Ubuntu are currently the two most popular Linux
distributions [6]. Manjaro and its base Arch has smaller user bases, but are popular
with enthusiasts. The procedures and software used in this thesis should therefore
work without trouble on most modern Linux systems.

Xilinx ISE version 13.3 was used for hardware design and synthesis, while ISim was
used for simulations. The third-party USB cable driver from [12] was used for JTAG,
as explained in Section 7.3. The software API was compiled with both GCC version
4.8.2 and 4.9.2.



28 CHAPTER 4. DEVELOPMENT PLATFORM



Chapter 5

Implementation

The new platform is nearly identical in overall structure to the previous, as shown
in Figure 5.1, However, there are a lot of underlying changes to reduce complexity
and improve reliability and scaling. A more detailed view of the system in shown in
Figure 5.2.

Control

Development

Cellular
AutomatonFitness

Cell
BRAM A

Cell
BRAM BCom

Fetch Decode

Figure 5.1: High-level block diagram of the new hardware platform.

Conceptually, the platform is a three-stage interlocked pipeline with the stages Fetch,
Decode and Execute, where the Execute stage includes the Control, Development
and CA modules. Only one module within each stage is activated at a time, and
the interlocking allows each module to use multiple cycles and contain sub-pipelines
without requiring complex hazard detection and evasion. Fitness is special in that
it is not part of the main pipeline since it operates in a dataflow-like fashion.

29



30 CHAPTER 5. IMPLEMENTATION

F
etch

C
om

F
etch

H
andler

Instruction
B

R
A

M

F
etch

C
ell

F
etcher

R
ule

F
etcher

R
ule Testers

R
uleV

ector
B

uffer

R
uleN

um
B

R
A

M

R
ule

B
R

A
M

H
its To

N
um

bers

H
its To

V
ector

D
evelopm

ent

S
end

B
uffer

M
U

X

C
ell

W
riteR

ead

R
uleV

ector
R

eader

R
uleN

um
R

eader

R
ule

W
riter

LU
T

W
riter

F
itness

S
ender

LU
T

B
R

A
M

C
ellular A

utom
aton

S
block

M
atrix

Live
C

ounter

C
onfig

R
eadback

D
ecode

F
itness

C
ell

B
R

A
M

A

C
ell S

torageC
ell

B
R

A
M

B

C
ell

S
torage
M

U
X

Info
S

ender

LiveC
ount

B
uffer

F
itness

B
uffer

R
eceive 

E
ngine

Transm
it 

E
ngine

R
eceive 
B

uffer

Transm
it 

B
uffer

P
C

I 
E

xpress 
E

ndpoint 
C

ore C
om

m
unicationR

equest
H

andler

C
ontrol

Figure
5.2:D

etailed
block

diagram
ofthe

new
hardware

platform
.C

ontrolisim
plem

ented
asa

group
ofm

odules,m
arked

by
a

dotted
border.

Som
e
signals

are
color-coded

for
increased

readability.
Signals

from
D
ecode

are
colored

red,w
hile

those
to

the
Send

Buffer
and

C
ellStorage

M
ultiplexers

are
colored

blue
and

purple
respectively.

N
ote

the
two

different
hues

ofpurple
for

the
different

C
ellBR

A
M
s.

C
ontrolsignals

are
not

show
n.



5.1. GENERAL CONCEPTS 31

5.1 General Concepts

Some concepts are used repeatedly throughout the design. The main ones are pa-
rameterization, pipelining, buffers and states machines. The first three are general
and are detailed in the following subsections. The state machines vary from module
to module and are therefore detailed where appropriate, but all are of Mealy design
with clocked output.

5.1.1 Parameterization

Almost every part of the design is parameterized, usually with little restriction on
the range of values. Where restrictions do apply, asserts have been placed in the
code of the modules that do restrict them. These alert the user of incorrect values
during synthesis, and pinpoints the code that must be changed in the event of an
expansion. Keep in mind though that the ISA must likely be changed as well. The
list of parameters is shown in Table 5.1.

Parameter Values Notes
Communication Buffer Size Lg [1,∞] log2 of buffer size
Communication Reverse Endian True, False Required for x86 systems
Program Counter Bits [1, 16] Restricted by ISA/Decode
Matrix Width [2, 256] Restricted by ISA/Decode
Matrix Height [2, 256] Restricted by ISA/Decode
Matrix Depth [1, 256] Restricted by ISA/Decode
Matrix Wrap True, False

Type Bits [1, 32] Restricted by ISA/Decode
State Bits 1 Restricted by Sblocks
Counter Amount [1, 256] Restricted by ISA/Fetch
Counter Bits [1, 32] Restricted by ISA/Fetch
LUT Configuration Bits 1, 2, 4, 8 Restricted by Sblocks
Rule Amount [1,∞]
Rules Tested In Parallel [1,∞]
Rule Vector Buffer Size [1,∞]
Fitness Buffer Size [1,∞]
Fitness Module Name Special Without “fitness_” prefix

Table 5.1: Parameters with supported values.
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5.1.2 Pipelining

The new hardware design makes extensive use of pipelining, and since many stages
use a variable amount of cycles for a variety of reasons, interlocking is used in nearly
all pipelines. Interlocking is implemented with two signals connected to each stage:
Run and Done. When a stage does not require further cycles to finish, it asserts its
Done signal and then waits for the Run signal before continuing. The Run signals
for all stages are asserted when all Done signals are asserted. Each stage then resets
its Done signal and the process repeats. An example is shown in Figure 5.3.

Clock

Run

Stage1.Done

Stage2.Done

Stage3.Done

Figure 5.3: Wave diagram showing pipeline interlocking signals for a 3-stage pipeline
where the stages complete in one, two and three cycles respectively.

Often, a multi-cycle stage only looks at its input in the first cycle to determine its
execution path. This can be taken advantage of to reduce register usage by ruling
that the data in the pipeline registers only have to be valid when Run is asserted.
The stages can then write directly to their output registers, instead of caching partial
output internally in extra registers. If a stage happens to require the output of the
previous stage for multiple cycles however, input caching is needed. This causes no
register usage reduction in the worst case, while the register usage is halved in the
best case. The common case for this design is to only look at the input the first
cycle for the most part, which means that is should provide a nice reduction.

5.1.3 Buffers

All buffers are implemented as first-in first-out (FIFO) queues using one BRAM and
two counters. The counters determine the addresses that are written to and read
from, and are incremented when the write or read signals are asserted. Figure 5.4
shows an example where a FIFO is used to buffer two words.

Notice how the read signal needs to be asserted before the clock tick when data is
read to ensure correct consecutive reads. This is due to the operation of the BRAM,
which updates its state at clock ticks. To have correct data available for a read in
the following cycle, the address must therefore be updated before the clock tick (by
asserting the read signal).
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Clock

Data In A B

Data Out A B

Data Count 0 1 2 1 0

Data Read

Data Write

Figure 5.4: Wave diagram for a FIFO buffer, showing two consecutive writes imme-
diately followed by two consecutive reads.

5.2 Communication

The Communication module is based on Xilinx’ reference PCI Express programmed
input/output design. It consists of the Xilinx PCI Express Endpoint Core, reception
and transmission engines, data buffers, and a special request handler, as shown in
Figure 5.5.

Receive 
Engine

Transmit 
Engine

Receive 
Buffer

Transmit 
Buffer

PCI 
Express 
Endpoint 

Core

Communication

Request
Handler

Fetch

Control

Figure 5.5: Detailed block diagram of the Communication module.

The Endpoint Core completely handles the physical and data link layers, plus all
TLPs related to configuration and establishment of the PCI Express connection. The
Reception Engine is responsible for parsing TLPs and either writing received data
to the Reception Buffer or notifying the Transmission Engine of a read request.
The Transmission Engine is responsible for building completer TLPs to respond
to read requests, using data from the Transmission Buffer. The Request Handler
listens to the read requests provided by the Reception Engine, and can override the
Transmission Engine to respond to special requests.
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5.2.1 PCI Express Endpoint Core

Several Spartan-6 FPGAs, including the one used in this project, contain a special-
purpose hardware block for implementation of PCI Express. The block completely
handles the physical and data link layers, with the transaction layer left for the user.

To make use of the block, Xilinx provides the Spartan-6 Integrated PCI Express
Endpoint Core; version 2.3 was used in this project. This core additionally takes
care of all TLPs related to configuration of the PCI Express connection. Other
TLPs, such as read and write requests, are presented on an AXI4-Stream interface
[41].

The endpoint core is configured with two memory regions, both 4 kB in size1. The
first memory region (BAR0) is used for normal communication, while the second
(BAR1) is used for special requests. The separation is mostly conceptual as both
regions are treated as one data stream. The difference is that the special request
handler kicks in for read requests to BAR1.

5.2.2 Reception Engine

The Reception Engine is implemented as a simple state machine, as shown in Fig-
ure 5.6.

Figure 5.6: State machine for the Reception Engine.

Until the endpoint core presents valid data, the state machine remains in Idle. When
it does, the data is stored, and the TLP type is checked. If it is a read or write
request, the state machine continues down the corresponding path, otherwise the
remaining data is discarded. The remaining portion of the TLP headers are then
parsed in the DW1 and DW2 states. For read requests, the state machine waits in
ReadWait until the Transmission Engine is ready to accept a new read request, and
then proceeds to Idle. For write requests, the state machine stays in WriteData,
where one DW of data is written to the Reception Buffer each cycle, for the length
of the packet, and then proceeds to Idle.

1 The smallest memory region that can be memory-mapped is one page. The default page size
in Linux is 4 kB.



5.2. COMMUNICATION 35

5.2.3 Transmission Engine

The Transmission Engine is implemented as a simple state machine, as shown in
Figure 5.7.

Figure 5.7: State machine for the Transmission Engine.

Until the Reception Engine signals a read request, the state machine remains in Idle.
When a read request is signaled, the state machine begins to traverse the DW path.
The DW0, DW1 and DW2 states each transmit one DW of the completer TLP
header. Then if the special request signal is set, it proceeds to CompleteSpecial,
where it transmits data presented by the Request Handler. Otherwise, it proceeds
to CompleteData where it transmits one DW of data from the Transmission Buffer
each cycle. When the requested number of DWs has been transmitted, it proceeds
back to Idle.

5.2.4 Request Handler

The Request Handler continually listens to the read requests presented by the Re-
ception Engine. If the request is targeting the primary memory area (BAR 0), it is
a normal read request and the Transmission Engine is allowed to proceed as usual.
Otherwise, it is a special request and the Transmission Engine is overridden.

The kind of special request is determined by the address of the read request, and
handled thereafter. There are currently four special requests implemented, as shown
in Table 5.2.

Address Request
0x00 Get Transmission Buffer data count
0x01 Get Transmission Buffer available space
0x02 Get Reception Buffer data count
0x03 Get Reception Buffer available space

Table 5.2: Special requests.

Note that each of the implemented special requests assumes a read request length
of one DW. If the request has a greater length, the returned data is simply repeated
to fill the packet.
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5.3 Fetch

The Fetch module is responsible for retrieving the next instruction that should be
decoded and then executed. It also handles all control flow. It is implemented
as a two-stage interlocked pipeline consisting of a Fetch Communication module
and a Fetch Handler module connected to an Instruction BRAM. This is shown in
Figure 5.8.

Fetch
Com

Fetch
Handler

Instruction
BRAM

Fetch

DecodeCom

Figure 5.8: Detailed block diagram of the Fetch module.

Fetch Communication is responsible for converting data from Communication into
instructions while the Fetch Handler takes care of control flow and the instruction
memory. Both stages are implemented as state machines, making interlocking nec-
essary.

5.3.1 Fetch Communication

While instructions are 256-bit, the communication interface is only 32-bit. This
means that the host system has to split each instruction into multiple 32-bit pieces.
As detailed in Appendix C, many instructions make use of less than 256 bits. In
fact, most instructions fit within the first 32 bits. Sending all 256 bits for each
instruction is therefore a bit excessive. To optimize communication, the first 32-bit
piece of each instruction has a field declaring the amount of following pieces required
for reassembly.

The job of the Fetch Communication module is to combine all the pieces back into
full 256-bit instructions. It starts by reading the first 32-bit piece and setting all
other bits to zero. Then, the 3-bit instruction length field is analysed to determine
how many further pieces are part of the same instruction. The remaining pieces are
then incorporated into the instruction, before it is passed on to the Fetch Handler.

5.3.2 Fetch Handler

The Fetch Handler has three modes of operation: FetchCom, FetchMem and Store-
Mem. They are implemented as states in a state machine, as shown in Figure 5.9.
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Fetch
Com

Fetch
BRAM

Store
BRAM

Store

End

Jump

Break

Figure 5.9: State machine for the Fetch Handler.

In FetchCom mode, instructions are fetched from Communication and sent to De-
code. Since a variable-length format is used, this may take multiple cycles. To make
sure that instructions do not get “stuck” in the pipeline due to no further instructions
arriving at the communication interface, NOPs are sent when Fetch Communication
is busy. When encountering a Store instruction, it enters StoreMem mode and for
a Jump instructions it enters FetchMem mode.

In FetchMem mode, instructions are fetched from Instruction BRAM and sent to
Decode. The first Instruction BRAM address is specified by the Jump instruction,
and then it is incremented by one after each instruction. When encountering a
Break instruction, it enters FetchCom mode. As a safety precaution to prevent
some potential lock-ups, FetchCom mode is also entered if the program counter
overflows.

In StoreMem mode, instructions are fetched from Communication and stored in
Instruction BRAM. The first Instruction BRAM address is specified by the Store
instruction, and then it is incremented by one after each instruction. Instructions
are stored in full 256-bit format. When encountering an End instruction, it enters
FetchCom mode.

Control flow is implemented by having N M-bit general counters and a JumpEqual
instruction. The counters can be incremented or reset using special instructions.
The JumpEqual instruction is treated as a Jump instruction when the specified
counter matches the specified value, but is otherwise discarded.

5.4 Decode

Decode is responsible for parsing instructions, setting up control signals and passing
instruction parameters to activated modules. It is a very simple module, being
essentially a giant switch statement with a case for each instruction.

Control signals are sent to all top-level modules except Communication and Fetch
which operate earlier in the pipeline, and Fitness which operates in a dataflow-like
manner. By default, all modules are given a no-operation signal and multiplexers
stay unchanged. Then, depending on the instruction’s operation code, the control
signal for the appropriate module is set, parameters (if any) are extracted and passed
on to the module, and multiplexers are changed if needed.

Each instruction will cause exactly one module to be activated in the Execute stage.
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This is to keep the design clean and to reduce inter-module dependencies.

5.5 Control

Control is a group of modules, shown in Figure 5.10. Together, the modules control
all inputs and outputs for the Cell Storage, CA and Development modules. Each
module is designed to do one specific task and be independent of any other modules.
This means that modules are mostly very simple and that it requires a low amount
of effort to add new modules or to modify existing.

Send
Buffer
MUX

Cell
WriteRead

RuleVector
Reader

RuleNum
Reader

Rule
Writer

LUT
Writer

Fitness
Sender

Decode

Info
Sender

Fitness
Buffer

Control

Dev

CA

Cell
BRAM A

Figure 5.10: Detailed block diagram of the Control modules. Red signals are inputs
while blue are outputs. Control signals are not shown.

Following are detailed descriptions of the different modules, in order of increasing
complexity.
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5.5.1 Rule Writer

The purpose of the Rule Writer is to store new rules to the Rule BRAM within
the Development module. It is, along with the LUT Writer, the simplest control
module. When activated, it stores one rule to a specified index of the Rule BRAM.
The indexes double as priority for the rules, with higher indexes having higher
priority.

As explained in Section 5.7, index zero is reserved for representing that no rules have
triggered. Writing a rule to it has no effect as the Rule Testers are reset instead of
testing the rule during development.

5.5.2 LUT Writer

The purpose of the LUT Writer is to store new LUTs to the LUT BRAM within the
CA module. It is, along with the Rule Writer, the simplest control module. When
activated, it stores one LUT to a specified index of the LUT BRAM. The index is
equivalent to the cell type that should be given that LUT during CA configuration.

5.5.3 Information Sender

Nearly all parts of the system are parameterized. The previous practice of manually
ensuring that the parameters of both the design and API were in sync was both
tiresome and prone to error. Therefore, the Information Sender provides a means
for the API to automatically query these parameters.

When activated, it puts all parameters that might be useful into the Transmission
Buffer. This includes information about the CA such as the size, whether wrapping
is enabled, and number of bits per state and type; information about counters
available for control flow; maximum number of rules; and information about the
fitness modules, such as the type and output size.

5.5.4 Fitness Sender

The Fitness Sender is responsible for sending the output of the Fitness module to
the host. This is a simple matter of moving data from the Fitness Buffer to the
Transmission Buffer when data is available in the first and there is space in the
second. The number of words that is transferred per activation is declared by the
Fitness module (see Section 5.9). Keep in mind that the machine will go into a
deadlock if insufficient data is produced for the Fitness Buffer.
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5.5.5 Rule Vector Reader

The Rule Vector Reader is tasked with reading one or more rule vectors created by
the Development module and sending them to the host. Since rule vectors can be of
any length, they are each split over multiple words, starting with the lowest indexes.
The final word of each vector is padded with zeroes. For more information on rule
vectors, see Section 5.7. Keep in mind that the machine will go into a deadlock if
insufficient data is produced for the Rule Vector Buffer.

5.5.6 Rule Numbers Reader

The Rule Numbers Reader is tasked with reading each cell’s most recently activated
development rule and then sending them to the host. The rule numbers are stored
in the Rule Numbers BRAM of the Development module and are scanned in raster
order2. Each word is fitted with as many rule numbers as possible without splitting
them over multiple words or containing numbers from different rows. Any remaining
space is filled with zeroes.

5.5.7 Cell Writer Reader

The purpose of the Cell Writer Reader is to perform read and write operations
against Cell BRAM A, causing it to be the system’s main input/output channel. It
is possible to write states and types to either a single cell, a row of cells or all cells,
while it it is possible to read from a single cell or all cells.

It is easily the most complex control module, due to the intricate operations required
to change only selected values in BRAM rows. Additionally, it must convert variable-
width types and states into fixed-width words in an efficient manner when reading.

The module consists of Combiners which are used to combine new data with existing
data from the Cell BRAM, Repeaters to simplify the process of filling the entire
Cell BRAM with a given state and type, Shifters used to select output, and a state
machine which controls everything. Figure 5.11 shows how the components are
connected.

Combiner

The Combiner is a combinatorial unit that combines two signals of different lengths
by replacing one part of the long signal with the short signal. This is implemented
using a shifter and a mask that is the size of the short signal. First, the short input
and mask is shifted into the desired position. Then, the long signal is AND-ed with

2 In raster scanning, two-dimensional data is read line-by-line, least significant to most signifi-
cant. This is extendable to 3D; increment X first, then Y, then Z.
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Combiner

Repeater

Cell
BRAM A
States

Shifter

MUX

Combiner

State

Address ZY

States

X

Cell Writer Reader

State
Machine

Com

Decode

Figure 5.11: Detailed block diagram of the Cell Writer Reader. Only the state part
is shown to reduce complexity; the type part is identical. Cell BRAM A is drawn
inside the module for completeness. Control signals are not shown.

the inverted mask and OR-ed with the short signal, producing the combined signal.
The process is illustrated in Figure 5.12.

A 0  0  0  0

1  1  1  1 0  0  0  0

B

1  1  1  1 0  0  0  0

A

1  1  1  1

0  0  0  0 B [3-0]

B [11-8] 0  0  0  0 B [3-0]

A 0  0  0  0

A B [3-0]

1. SLL

2. NAND

3. OR

0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0

0  0  0  0

0  0  0  0

B [11-8]

B [11-8]

0  0  0  0

0  0  0  0

Figure 5.12: The three operations that power the combiner. A is the short input,
highlighted in green. B is the long input, highlighted in orange. The mask is
highlighted in yellow.
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State Machine

The state machine consists of seven states, shown in Figure 5.13. When an operation
is received, the BRAM address is set and it transitions from idle to the corresponding
state. Some states are dual-purpose due to the similarity of the operations, while
others are not. Coincidentally, the dual-purpose states complete in one cycle while
the others require multiple3.

Idle

Fill

Write
State

Write
Type

Send
One

Send
All States

Send
All Types

Figure 5.13: Cell Writer Reader state machine

The dual-purpose states are as follows: Send One can send either a state or a type,
Write State can write either one or a row of states, and Write Type can write either
one or a row of types. The remaining states are as follows: Fill writes the same state
and type to all cells, Send All States reads all states in raster order, and Send All
Types reads all types in raster order. The output formatting of the Send All states
are equal to that of the Rule Numbers Reader, detailed in Section 5.5.6.

5.6 Cell Storage

The Cell Storage serves as the location for exchange of cell data between the CA,
Development and host. It contains two separate storage areas, the contents of which
can be swapped. Each storage area can host a full matrix of cell states and types,
and allows one row of both to be read each cycle. The main reason two storage areas
are needed is the Development module. It requires a place to store its output without
affecting its input during the development process. More on this in Section 5.7.

The module is implemented as two dual-port BRAMs, one for states and one for
types, each sized to twice the size of the matrix. To create two separate storage
areas (A and B) with both states and types, the address of the first port is prefixed
with 0 and the second with 1. The contents of the storage areas can then be made
to appear swapped by simply inverting the prefix bits.

3 Technically, the Send One state does not necessarily complete in one cycle since it will wait
until there is available space in the Transmission Buffer. However, one cycle is the common case.
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To service all required components, the Cell Storage is connected via a multiplexer.
It has two modes; normal and development. In normal mode, storage A is connected
to the Cell Writer Reader and storage B to the CA. In development mode, both
storage areas are connected to the Development module.

5.7 Development

The Development module is responsible for providing the ontogenetic aspect of the
system by allowing cells to be changed based on user-supplied development rules
that are described in Appendix C. It uses Cell BRAM A as input and outputs the
modified cells to Cell BRAM B.

The module is implemented as a two-stage interlocked pipeline controlled by a state
machine. Stage one contains the Cell Fetcher, which retrieves cell neighborhoods
from Cell BRAM A, and stage two contains a four-stage pipeline that tests devel-
opment rules against the cell neighborhoods. This is illustrated in Figure 5.14.

Rule
Fetcher

Cell
BRAM B

Hits To
Numbers

Hits To
Vector

RuleVector
Buffer

RuleNum
BRAM

Cell
Fetcher

Cell
BRAM A

Rule Testers  
Rule 

BRAM

Fetch Test Process

Stage 1 Stage 2

Writeback

Control

Control

Control

Figure 5.14: Detailed block diagram of the Development module. The two main
pipeline stages are separated by a dashed line, while the sub-stages of the pipeline
within the second main stage are marked at the top. The cell BRAMs are drawn
inside the module for pipeline completeness. Control signals are not shown.

The state machine, shown in Figure 5.16, ensures proper timing of the complex
pipeline. It is responsible for setting input and output addresses, activating pipeline
stages and setting write signals. A complete timing diagram can be seen in Fig-
ure 5.15.

5.7.1 Cell Fetcher

The Cell Fetcher reads the cell neighborhoods for one row of cells from Cell BRAM
A per run. It is implemented as two state machines, one which sets the BRAM
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Figure 5.16: State machine controlling the Development module.

address and one which retrieves the output. The first can be seen in Figure 5.17.
The other is equivalent to the first except for being delayed two states, thus having
Wait 1 as initial state instead of Fetch Center.

Fetch
Y Neg

Fetch
Y Pos

Fetch
Z Neg

Fetch
Z Pos

Wait 1Wait 2

Fetch
Center

Figure 5.17: State machine for the Cell Fetcher.

By reading an entire row at a time, the neighbors along the X axis are fetched “for
free”, while the other axes require two extra reads each. This lands the run time
on 5 cycles for 2D matrices and 7 cycles for 3D when including BRAM latency.
The Cell Fetcher is therefore only a limiting factor when there are very few active
development rules.

By default, neighbors which would be outside the matrix are treated as having zero
for both state and type. However, it is possible to enable matrix wrapping to instead
use the neighbors on the opposite side of the matrix.

5.7.2 Rule Fetcher

The Rule Fetcher is responsible for fetching development rules from the 1-in N-
out Rule BRAM (one write port and N read ports) and passing them to the Rule
Testers. It takes into account the specified number of active rules to speed up
the development process by only fetching those. It is possible to further improve
performance by setting that multiple rules should be fetched and tested at the same
time. In that case, those with indexes higher than the number of active rules within
the last rule batch are replaced by rules with no effect.
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5.7.3 Rule Testers

The Rule Testers are responsible for testing development rules received from the
Rule Fetcher against cell neighborhoods received from the Cell Fetcher. They are
unique in that they produce output after both one and two cycles. Information
about rule activations (“hits”) are passed on to the Hit Processors after one cycle,
and the result of the rule application is passed on to Cell BRAM B after two cycles.
Rule hits undo any effects of previous hits so that it is impossible for two rules to
have simultaneous partial effects, in cases where one modifies only the state and the
other only the type.

There is a special case for rule zero. It is used as an internal reset by forcing a
hit and setting the output cell to the input cell. This implementation was chosen
because of its simplicity and the ability to use zero to mean “unchanged” in the Hit
Processors. It also makes it possible to have zero active rules.

5.7.4 Hit Processors

There are two modules dedicated to providing information about the development
procedure, Hits To Vector and Hits To Numbers. The input for both are hits passed
on from the Rule Testers.

Hits To Vector stores a vector, where each bit signifies whether the rule of that
index was triggered or not, to the Rule Vector Buffer after each development phase.
Rules that have triggered but is later overridden by a rule with higher priority is still
marked as having been triggered in the vector. If the buffer is full, it is reset instead
of waiting, to allow programs to disregard the data without causing deadlocks.

Hits To Numbers stores the index of the last triggered rule for each cell to the Rule
Numbers BRAM. Since rule zero is always marked as a hit, the BRAM is reset to
zeroes at the beginning of each development phase. Therefore, only hits from the
most recent phase are stored.

5.8 Cellular Automaton

The CA module is the centerpiece of the system. It is what contains the sblock
matrix and the control logic to service it. The module is responsible for configuring
the sblock matrix with data from Cell BRAM B, step the sblocks, store the number
of live cells after each step, and write new states back to Cell BRAM B.

The implementation can be seen in Figure 5.18. It consists of a state machine, the
Sblock Matrix and a Live Counter, in addition to storage for LUTs and a buffer for
the Live Counter.
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Figure 5.18: Detailed block diagram of the CA module. Config Readback is a
symbolic module for the majority of the state machine.

5.8.1 State Machine

The state machine in Figure 5.19 is what powers this module. It is what controls
both configuration, readback and stepping of the Sblock Matrix. Additionally, it
sets write signals for the Live Count buffer.

Warmup 1 Warmup 2
Configure

First Configure

Step

Readback

Idle

Figure 5.19: State machine controlling the CA module.

Configuration is the process of taking cells from Cell BRAM B, converting them
into LUTs and programming the sblocks. It operates on one row of cells/sblocks
at a time. First, the cells are read from Cell BRAM B and the types of used as
addresses for the 1-in N-out LUT BRAM to find the corresponding LUTs. Then,
the LUTs are loaded into shift registers and transferred to the sblocks a few bits at
a time, the speed of which is configurable. Finally, the states/FFs of the sblocks are
set to the states of the cells.

Readback is the process of extracting the cell states from the Sblock Matrix and
storing them back in Cell BRAM B. This operation also works on one row at a
time. However, it is much simpler and faster than configuration since it simply
directs the output of the sblocks to the Cell BRAM and sets the correct row.
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Stepping is the process of telling the Sblock Matrix to update the state of each of its
sblocks. The new state is determined by the using the neighbor states as the input
to the LUT, according to the format detailed in Appendix C. Since it is common
to step hundreds of times in sequence, the step instruction has a parameter for the
number of steps, up to a maximum of 65535 (a 16-bit number).

5.8.2 Sblock Matrix

The Sblock Matrix essentially contains enormous amounts of the sblock that are
described in Section 2.4.1. The only difference is that the sblocks used here have
support for configuring multiple bits of the LUT each cycle. However, to use the
dedicated shift registers as configurable LUTs, there are some restrictions on the
number of bits. Firstly, it can only be powers of two; secondly, it can maximally be
2 for 2D matrices and 8 for 3D. Keep in mind that each bit adds one extra signal
for each sblock, which can accumulate to a significant amount of required routing
resources.

By default, neighbors which would be outside the matrix are treated as having
zero for both state and type. However, it is possible to enable matrix wrapping to
instead use the neighbors on the opposite side of the matrix. This option lets the
user decide if programs should be able to exploit the matrix size when for example
creating oscillators.

5.8.3 Live Counter

The Live Counter is essentially a giant adder tree that is connected to the output
of each sblock. It calculates the total number of live cells after each CA step and
stores them in the Live Count Buffer. Due to the massive amount of sblocks, the
calculation pipelined over many cycles, the exact number of which is dependant on
the number of sblocks. However, the throughput remains at one total per cycle.

If the Live Count Buffer happens to be full, it is reset instead of waiting, to allow
programs to disregard the data without causing deadlocks. This will likely corrupt
all fitness evaluation until all buffers are properly reset however.

5.9 Fitness

The Fitness module is responsible for evaluating the output of the CA for use with
EAs. Since fitness evaluation vary widely between applications, the interface of the
Fitness module is designed to be simple and generic, such that the module is easy
to replace.
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It is connected in a dataflow-like manner between the Live Count Buffer and the
Fitness Buffer. Whenever there is enough data available in the Live Count Buffer, it
should fetch that data, processes it, and store the result in the Fitness Buffer. The
host can then later retrieve it by activating the Fitness Sender.

To comply with the adaptive interface, there are a few things that the Fitness
module needs to tell other parts of the system. First is the number of words per
result, required by the Fitness Sender. Second is a unique identifier that is reported
to the host by the Information Sender. To allow further versatility, the module can
also report custom synthesis parameters to the host, as long as they all fit within
16-bits.

There are currently two implemented fitness modules: Live Count and DFT.

5.9.1 Live Count

The Live Count Fitness module is used to transfer the live counts to the host for
software-side fitness evaluation. The implementation is as simple as it gets: The
output of the Live Count Buffer is fed directly into the Fitness buffer, and the write
and read signals are activated when the Live Count Buffer has data and the Fitness
Buffer has space.

5.9.2 DFT

The DFT Fitness module uses a DFT to convert the live count data into frequency
spectrums. This has the advantage of being able to pick up certain information that
might be near-impossible to detect using conventional means. As shown in [2], using
a DFT to interpret CA output holds potential.

A DFT of transform size N takes N complex numbers as input and produces N
complex numbers as output. For transforms where all input numbers are real, the
second half of the output mirrors the first half and can be safely ignored to save
computation effort. Each output value of the DFT is a linear combination of all
input values, the constants of which are known as twiddle factors. The twiddle
factors rely only on the transform size and can therefore be computed ahead of time
to reduce the complexity of the calculations.

This module is essentially a revised version of Støvneng’s design in [32]. It has
been refactored, streamlined and adapted to fit into the new design. It is also more
customizable, supporting parameters other than powers of two, and can generate
twiddle factors by itself during synthesis instead of relying on an external program.
The twiddle factors are stored in the order they are needed, encoded in a fixed-point
format since they range from −1 to 1.
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Figure 5.20: Detailed block diagram of the DFT Fitness module. The two pipeline
stages are marked at the bottom. Blue boxes are multiplexers. Control signals are
not shown.

To allow the DFT to continue processing while results are transferred from the DFT
to the Fitness Buffer, the module is divided into two pipeline stages. This can be
seen in Figure 5.20. The first stage contains the DFT while the second contains the
logic for transferring the result. The pipeline is interlocked, since both stages can
run for hundreds of cycles.
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Figure 5.21: Detailed block diagram of the DSP Wrapper. Red boxes are registers
and blue boxes are multiplexers.

The DFT is calculated using the DSP slice wrappers seen in Figure 5.21 in multiply-
accumulate mode. Afterwards, the real and imaginary parts of each output value
are combined into a single positive number by adding their absolutes. The most
optimal configuration would be two DSP slices per output value; one for each real
and imaginary part. However, FPGAs have a limited number of DSP slices. For
larger transform sizes, the DSPs therefore have to calculate multiple output values
in sequence. Since the Live Count Buffer, as all FIFO buffers, is delete-on-read, an
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internal buffer is used to repeat the values. This Repeat Buffer is flushed and filled
during the first calculation phase and then repeats the values to the DSPs during
subsequent phases while also feeding the values back into itself. The state machine
controlling the DFT is shown in Figure 5.22.
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Wait for 

Input Calculate
Wait for 

Sum
Sum 

Ready

Wait for 
Combined

Combined 
Ready

Figure 5.22: State machine controlling the DFT module.

5.10 Software API

In accord with the hardware design, the software API has also been given a complete
overhaul. Everything has been rewritten from scratch to improve clarity, function-
ality and ease of use. Figure 5.23 illustrates the API structure: A main API is used
to connect to the hardware platform, send instructions and receive data; and two
optional APIs allow conversion of the received data into human-readable forms.

CARP

Com

PCI

Print PostScript

User Program

Data Structures

Figure 5.23: API structure. The main API is colored green, optional APIs blue and
dependencies yellow.

5.10.1 Main API

The main API is used to connect, disconnect, and reset the hardware platform, as
well as execute instructions and parse received data into data structures.

On connect, the API automatically clears any remaining data in the Transmission
Buffer and queries the synthesis parameters with the Send Information instruction.
The buffer is cleared once again on disconnect, and the synthesis information is
nulled. The reset function can be used to set the system into freshly booted state
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by clearing all counters, sblocks, buffers and BRAMs, except for the instruction
memory.

Each instruction is given its own function with one-to-one correlation of parameters.
Data structures are used to represent the parameters where possible, such as for
LUTs and development rules. The instructions are queued in a buffer until the
program tries to receive data or manually flushes it, to allow for debugging and
creating test benches from the instruction stream.

For each instruction that should return data there is a corresponding getter function
used to receive that data and parse it into a data structure. The getter functions are
needed because of the hardware platform’s separate instruction memory and control
flow, which causes the amount of instructions issued by the API to not necessarily
correspond to the number of times the instruction is executed.

5.10.2 Optional APIs

The two currently implemented optional APIs are Print and PostScript. Both are
used to convert data structures into human-readable formats.

The Print API allows terminal printouts of all data structures, which includes system
information, rule vectors and matrices (types, states or rule numbers).

The PostScript API allows programs to generate PostScript figures from one layer
of a matrix data structure (types, states or rule numbers). The caller specifies the
coloring scheme that is used by providing a function that takes in a cell value and
returns a hexadecimal RGB value.

5.10.3 Communication

The communication part of the software API is split into two parts:

The first is a general interface for connecting to PCI and PCI Express devices
without using a custom driver. It takes advantage of Linux’ automatic population
of /sys/devices/pci* with files representing the memory regions of all PCI and
PCI Express devices. The directory is searched by vendor and device id, and the
corresponding memory regions are memory-mapped into the program. Due to this
direct interaction with device files, each program must be run with superuser rights.

The second is an interface specifically for the Communication module. It provides
open, close, read and write functions similar to the old BenERA interface, in addition
to implementing all special request functions in Table 5.2. When a read or write
operation is initiated, buffers are checked for available data or space. If there is not
enough present, the program waits for 1 microsecond and then rechecks.
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5.10.4 Compilation

The compilation system has been streamlined to allow users to simply add new files
in libcarp/ or programs/, and have them automatically be integrated into the
API or compiled with the API respectively by calling make.

First, all files in libcarp/ is compiled to the statically linked library libcarp.a.
Then each file in programs/ is compiled with references to all the header files in
libcarp/ and the compiled library. Programs must include carp.h to use the main
API and optionally print.h and postscript.h for the output APIs.

To facilitate unit testing, all programs whose name start with test_ are executed
in sequence when make test is called. testframework.cinclude is provided as a
common assertion framework.

Flags

There are three compilation flags available: Debug, low-latency and testbench.

Debug mode causes various information to be printed at certain times during exe-
cution, such as during reset and when the API must wait for buffer space or data.
To prevent excessive prints from the buffer checks, the delay between each check is
increased to 100 ms.

Low-latency mode causes the buffer check delay to be skipped entirely, creating a
busy-wait loop. It can be used when low latency is crucial, but should be unneeded
in most circumstances.

Testbench mode can be used to create test benches when the hardware platform is
unavailable. Instead of connecting to the board, synthesis parameters are mocked
at compile time and the program prints the contents of the instruction buffer as a
test bench and exits when the first buffer flush is triggered.



54 CHAPTER 5. IMPLEMENTATION



Chapter 6

Verification

A system would be useless if it did not operate according to specification. Therefore,
the platform has been thoroughly verified through functional tests and an example
program.

6.1 Functional Tests

The functionality of the platform has been verified under normal use conditions with
the tests described in Appendix A. Each test has a short description and a list of
the instructions that it verifies, given that it passes. Together, the 11 tests cover all
system functionality except for fitness, which is designed to be application specific.
The tests are implemented as separate programs, but use a shared test framework.
A full system reset is performed before each test.

All tests are passed for all configurations of the platform that have been imple-
mented. This includes 5x5, 16x16, 32x32, 4x4x4, 8x8x4, 8x8x8, 8x16x4 and 10x10x8
matrix sizes; 5, 6 and 8 type bits; 2, 4, 6, 7 and 8 rules tested in parallel; and 1, 2, 4
and 8 LUT configuration bits. The platform is therefore evaluated to be functional
and scalable.

6.1.1 DFT

Although the fitness modules have no test programs, the DFT module and the
DSP wrapper has their own test benches to ensure that refactoring has not changed
functionality.

Testing shows that the DFT produces slightly different output than before. This is
likely due differences is rounding or expression structures between the VHDL and
python implementations for generating the twiddle factors. However, as shown in
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Table 6.1, the new module is more precise for the default number of twiddle decimals
and can be scaled to be even more precise.

DFT Twiddle Absolute Error
Version Decimals Maximum Average

Old 6 7 0.86
New 6 2 0.59
New 12 1 0.11

Table 6.1: Absolute error of new and old DFTs compared to numpy’s rfft.

6.2 Example Replicator

As a proof of concept, the example in Figure 6.1 was created to showcase how
development can be used to create simple self-replicating structures in a 2D CA
that can grow to any desirable size given enough time. It was manually designed
using 17 development rules and 13 cell types, and the source code is available in
programs/demo_replicator.c.

In essence, green cells creates copies of themselves going around in clockwise loops,
while yellow cells shoot off from the corners to begin the creation of new loops.
When loops are completed, the center cells turns red. After the entire structure has
formed, the next step would be to use it for computation by specifying LUTs for
each cell type. However, that is outside the scope of this simple example.
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(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7 (i) Step 8

(j) Step 9 (k) Step 10 (l) Step 11
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(m) Step 12 (n) Step 13 (o) Step 14

(p) Step 15 (q) Step 16 (r) Step 17

(s) Step 18 (t) Step 19 (u) Step 20

Figure 6.1: Simple 2D replicator. The images are created using the PostScript API.
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Discussion

FPGAs appear to be very suitable hardware for implementing CAs. The distributed
and locally connected nature allow a large number of cells while keeping performance
up at the same time. In the following sections, the platform’s performance and
resource usage is analysed, followed by a brief discussion of the challenges during
development and potential future improvements.

7.1 Performance

As with the previous 3D design, the performance of certain modules scale with the
matrix width, as they operate on one row of cells at a time. The main ones are are
development, configuration and readback.

In addition, synthesis parameters allow the performance of some components to
be scaled up or down in trade for resource usage. [Rules Tested In Parallel] can
be increased to greatly improve the performance of development. The speed is
equivalent to the previous design when set to 2, but designs have been successfully
implemented with values of up to 16, depending on matrix size and configuration.
[LUT Configuration Bits] controls the speed of CA configuration, which at maximum
value is currently a bit slower than the previous design. Lower values ease routing
however, which allow implementation of designs with larger matrices.

The speed of the DFT can be adjusted by setting the number of DSP slices and the
transform size. However, as the fitness module is exchangeable, parameters have to
be specified at the top of the respective VHDL file.

In circumstances where the matrices are 2D and relatively small, it is possible to
synthesize a 3D matrix and stack multiple 2D matrices within it as individual layers.
By using only 2D LUTs and development rules, the multiple matrices can then be
developed and stepped in parallel, potentially reducing runtime by a large amount.
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It is however incompatible with the current fitness system, since the Live Counter
totals all cells regardless of how they are used.

7.1.1 Communication

The platform’s new PCI Express based communication interface has been profiled by
determining the latency and throughput of the link in both normal and low-latency
mode.

The latency is measured by averaging the times for 100000 pings. Each ping is the
execution a read_type instruction followed by retrieval of the type. Since all retrieval
functions check the amount of buffer data first, this totals to 2.5 PCI Express round
trips1plus one instruction execution per ping.

The throughput is measured by 1000 executions of the read_types instruction fol-
lowed by retrieval of their data. The calculated number of words transferred are
then compared to the time. The reads are interleaved so that an empty buffer is
never encountered.

Mode Latency Throughput

Normal 60.3 µs 2.1 MB/s
Low-latency 7.3 µs 2.1 MB/s

Table 7.1: Performance of the PCI Express communication unit.

The results are presented in Table 7.1. The latency appears to be decent in low-
latency mode, which is almost equivalent to succeeding the buffer check on the first
try. Normal mode is around 50 µs slower as it fails the first check and therefore
sleeps. The delay between checks is only set to 1 µs, but it is likely increased due to
operating system scheduling.

The throughput is not exceptional at around 1% of the 256MB/s that the PCI
Express endpoint block is theoretically capable of [41]. This is likely due to the
simplistic PIO scheme that requires that all transfers are processed by the CPU.
However, this is not as bad as one would first assume. Following is a short analysis
of the desired throughput for the example program in Figure 7.1.

Assume the following synthesis parameters: [LUT Configuration Bits] maximized
to 8, [Rules Tested In Parallel] set to 8, [Rule Amount] set to 256, [Fitness] set to
DFT with transform size of 128 and 16-bit output values, and the matrix sized to
10x10x8.

That brings development speed to 3.2 cycles/cell and configuration speed to 1.6
cycles/cell (plus overhead)2. The DFT work in parallel with the rest of the design,

1 Sending to the board requires no confirmation, and can thus be seen as half of a round trip.
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1 initialize()
2 while counter[0] != 128:
3 develop()
4 config()
5 step(128)
6 send_fitness()
7 swap_cell_storage()
8 counter[0]++

Figure 7.1: Example program.

using less time, therefore adding no further delay. It produces 32 words of data after
every 128 CA steps. With 800 cells, the time for each loop iteration then becomes
a little over 3.2 · 800 + 1.6 · 800 + 128 = 3968 cycles. 32 words per 3968 cycles at
125 Mhz constitutes around 4 MB/s. The communication unit can therefore supply
50% of the desired throughput, which should be acceptable for normal operation.
A faster communication module is of course desirable, but it requires much more
advanced logic that communicates through DMA with a custom driver.

7.1.2 Cellular Automaton

Previous hardware designs have been profiled by the test program in Figure 7.2 when
synthesized with an 8x8 matrix and 6 development rules. It is mainly a stress-test
of the CA stepping speed, and the fastest speed was 6.3 seconds in both [7] and [32].

1 initialize()
2 while counter[0] != 10000:
3 config()
4 step(50000)
5 readback()
6 swap_cell_storage()
7 read_types()
8 read_states()
9 develop()

10 counter[0]++

Figure 7.2: Updated test program from [7].

On the new platform, the program completes in 8.2 seconds. This is exactly twice of
what it should take given 125 MHz speed. Further study show that the PCI Express
Endpoint Core is to blame as it actually halves the frequency to 62.5 MHz at the
user side. This fact is barely mentioned in [41] and is never referred to by Xilinx’

2 The execution time of each instruction is detailed in Appendix C.
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core generator or example design. It has also gone unnoticed in simulations since
the communication module has been replaced with a special simulation version.

During synthesis and implementation, the constraint of 125 MHz have been applied
to all signals though, and the critical paths require about 7.9 ns. This means that it
is possible to (again) separate the communication module into a slower clock domain
to return the remaining design to full speed. The new design would then be 35%
faster instead of 30% slower for this test.

Unfortunately, the late discovery of the problem leaves insufficient time to fix it,
but it should be fairly straightforward. For the purpose of other speed and resource
comparisons, the platform is therefore assumed to run at 125 MHz.

7.2 Resource Usage

With a complete rewrite, it is interesting to see the differences in resource usage
between equivalent setups. Due to architectural differences, the performance of the
new design can not be perfectly matched with that of the previous, but it should
be close enough to determine the general trend. The following configuration assume
that the design is running at the intended 125 MHz.

The most closely matching configuration is: [LUT Configuration Bits] maximized
to 2 in 2D and 8 in 3D, [Rules Tested In Parallel] set to 2, [Rule Amount] set to
256, [Type Bits] set to 5, [State Bits] set to 1, [Fitness] set to Live Count and buffer
sizes set to 256. Other parameters do not significantly influence resource usage,
functionality or performance.

In 3D, the live counter is four times faster, configuration is half as fast, and readback
is an eight as fast. In 2D, configuration is a quarter as fast for 32x32 matrices. Due
to different scaling in the old 2D design, no other matrix sizes have equivalent
performance and have therefore been left out of the comparison. The results are
presented in Table 7.2.

The new design appears to be slightly more efficient in 3D. It uses about the same
amount of LUTs, but substantially fewer registers and slightly fewer BRAMs. This
is a bit surprising considering the four times larger adder tree in the Live Counter.
In 2D, both LUT and register usage are drastically reduced while BRAM usage has
gone up.

The size of the matrix is limited by the number of available 16-bit shift registers
(SRL16s), as each sblock uses 2 in 2D and 8 in 3D. Since the new design is more
finely tunable, larger matrices can fit onto the chip. A 10x10x8 matrix design uses
99.9% of the 6408 shift registers on the Spartan-6 LX45T, and has been successfully
implemented and tested with the above configuration. It will even implement with
[Rules Tested In Parallel] increased to 6 and [Fitness] set to a DFT using 32 out of
the 58 available DSP slices.
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Matrix SRL16 LUTs Registers BRAMs
(XxYxZ) Total % Old New Old New Old New

32x32 2048 32.0 14858 11277 16259 7043 38 53
8x8x4 2048 32.0 6529 6265 6011 4495 55 47
8x8x8 4096 63.9 7668 8374 5726 4913 50 47
8x16x4 4096 63.9 8234 8252 6531 4957 50 47
10x10x8 6400 99.9 – 11313 – 5832 – 52

Table 7.2: Resource usage without DFT compared to the old design with most
equivalently configured setup and performance. The old numbers are from [32].

At this point, routing becomes the main problem, as there are still many logic
resources left but nearly all paths are of critical length. Both the shift registers and
DSP slices are spread across the entire FPGA. This means that values from the
sblocks must be routed from the entire FPGA into one location when counting and
then spread out to the entire FPGA again when computing the DFT.

It 2D, the design clogs up before all shift registers can be used. The largest matrix
that has therefore been successfully implemented is 50x50. This is with the above
configuration, except for [LUT Configuration Bits] and [Rules Tested In Parallel]
reduced to 1, but with [Fitness] set to DFT.

7.3 Challenges

ISE lacks support for VHDL-2008, which is required to use custom types with gener-
ics. All array signals must therefore be converted to and from std_logic_vectors
before exiting and after entering modules. Hopefully, this is implemented in a way
that is both organized and understandable.

It appears that the USB cable driver for JTAG provided by Xilinx has some problems
with newer Linux kernels; it certainly does not detect the board in the current
hardware setup. Thankfully, a third-party driver was found at [12] which proved to
be compatible and solved the problem.

7.4 Future work

The most important issue that needs remediation is the downclocking caused by
the PCI Express Endpoint Core, which halves the performance of the entire design.
The relatively straightforward fix is to reintroduce a second clock domain, but clock
domain traversals might be tricky.
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The second most important issue, and by far the most challenging, is the relatively
low throughput of the communication module. Improvement requires the use of
DMA in combination with a custom device driver. It has the added benefit of
allowing programs to run without superuser rights, although the driver will need
them instead.

It is possible to further parameterize some parts of the design. First is the number of
rows that can be read from Cell Storage, which will allow for higher CA configuration
and readback speeds. Another is the number of cycles used by the Live Counter,
which will allow the user to trade speed for less resource usage and easier routing.
Finally, the Live Counter could be made exchangeable by an interface similar to
fitness, to allow more complex evaluation of the output. It might even be baked
into fitness.

The current design only executes one instruction at a time to keep everything simple
and organized. However, there are many circumstances where the next instruction
do not impact the currently executing one and can safely be run in parallel to gain
a small speedup. It should be possible to implement this by letting a form of hazard
detection module handle the interlocking signals for the main pipeline, such that
the run signal is asserted as soon as all modules that the next instruction depends
on are done.

Since some instructions have the ability to create deadlocks, some sort of watchdog-
timer might be useful to allow recovery of the system. The only alternative is cycling
the power, but that will break the PCI Express connection which necessitates a
reboot of the host as well.

7.5 Warnings

During synthesis, the design produces a substantial amount of warnings, although
significantly less than the previous. Most arise from unused signals due to the se-
lected synthesis parameters and are completely benign. In addition, a good deal
stem from the provided PCI Express Endpoint Core, which can also be safely ig-
nored.

In an effort to reduce clutter and direct focus at more important information, most
of the benign warnings are blocked by a filter. The remaining could not be removed
without possibly causing trouble later, due to a somewhat limited filter system. For
a standard 3D design, this reduces the amount of warnings from around 500 to about
50 3.

3 Synthesizing from within ISE produces around 730 warnings, opposed to the 500 when using
XST directly. However, both are filtered down to about 50.
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Conclusion

In this paper, NTNU’s CA research platform has been completely re-engineered.
The overall structure is equivalent, but the hardware design has been made more
modular, configurable and structured, and the software API more adaptable, com-
plete and user-friendly. The 2D and 3D designs have been unified and any external
dependencies removed. It should also be easily extendable to larger FPGAs.

The platform has been thoroughly tested in hardware and all issues with the previous
design that are listed in Table 3.1 have been resolved. It can fit CAs of up to 50x50
cells in 2D and 10x10x8 cells in 3D on a Spartan-6 LX45T. There are however some
performance setbacks with the communication module, which is slightly ironic as
its implementation was the original task of the project. However, when the design
is restored to 125 MHz, the raw CA performance should be about 35% higher in 2D
and 300% higher in 3D at lower or equivalent resource usage.

In essence, this thesis provides a complete tool for CA research and experimentation,
and allows study of self-organization, adaptation, replication and other applicable
biological processes. It can be integrated into any computer system with a recent
version of Linux and an available PCI Express socket.
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Appendix A

Test Descriptions

Test Description Verifies

0 Write types one by one, read them, check that
types match

Write One Type,
Read One Type

1 Write types row by row, read all, check that types
match

Write Row Types,
Read All Types

2 Write states one by one, read them, check that
states match

Write One State,
Read One State

3 Write states row by row, read all, check that
states match

Write Row States,
Read All States

4 Fill cells, check that all cells have correct type
and state

Fill Cells

5 Write states and types, swap, check that data is
gone, swap again, check that data is back

Swap Cell Storage

6 Write rules and types, develop, check rules have
triggered and types have updated

Develop, Write Rule,
Read Rule Vectors,
Read Rule Numbers

7 Write states, configure the sblock matrix, read it
back, check that states are unchanged

Config, Readback

8 Write states, types and LUTs, configure sblock
matrix, check states have changed

Step, Write LUT

9 Store program that sends 1 and then breaks, jump
to program address three times, check for three 1s

Store, End, Jump,
Break

10 Execute program that sends 1, increments counter
and jumps to itself unless the counter is equal to
three, check for three 1s

Jump Equal,
Counter Reset,
Counter Increment
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Appendix B

Attached Files

An archive containing the code for the hardware design and the software API should
be distributed with this thesis. If not, all resources related to the project can be
found online at https://github.com/lundal/carp.

Nearly all files from previous designs have been completely discarded, but parts of
old code have been reused in a few places.

Directory Structure
attachment.zip

api
libcarp
programs

vhdl
ipcores
modules

cellular_automata
communication
development
fetch
fitness
utility

packages
sp605
testbenches
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API Files
api

makefile ...................................................Build script

api/libcarp
bitvector.[c|h] ...............................Utility bit string builder
carp.[c|h] ..................................................Main API
communication.[c|h] ..................Communication module interface
instructions.h .............................Instruction code definitions
lut.h .............................................. LUT data structure
matrix.[c|h] .....................................Matrix data structure
pci.[c|h] ...........................Generic PCI/PCI Express interface
postscript.[c|h] .............................Optional PostScript API
print.[c|h] ........................................Optional print API
rule.h .................................Development rule data structure
utility.[c|h] .................................Various utility functions

api/programs
demo_development.c .......................Simple development example
demo_replicator.c ...........................Simple replicator example
demo_stacked.c ...........................Simple stacked-mode example
profile_communication.c ...............Profiles latency and throughput
test_config_readback.c ........................................Test 7
test_counters.c ...............................................Test 10
test_development.c .............................................Test 6
test_fill_cells.c ..............................................Test 4
test_instructions_storage.c ..................................Test 9
test_sblockmatrix.c ...........................................Test 8
test_swap_cell_storage.c ......................................Test 5
test_write_read_state.c .......................................Test 2
test_write_read_states.c ......................................Test 3
test_write_read_type.c ........................................Test 0
test_write_read_types.c .......................................Test 1
testframework.cinclude ...................Framework used by all tests
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VHDL Files
vhdl

carp.xise .............................................. ISE project file
filter.filter ......................................Warning filter rules
makefile ...................................................Build script
parameters.conf ..................................Synthesis parameters

vhdl/ipcores
sp605_pcie.xco ......................PCI Express IP core configuration

vhdl/modules
cell_storage.vhd .........................................Cell Storage
cell_storage_mux.vhd .........................Cell Storage Multiplexer
cell_writer_reader.vhd ............................Cell Writer Reader
decode.vhd .....................................................Decode
fitness_sender.vhd .....................................Fitness Sender
information_sender.vhd ............................Information Sender
lut_writer.vhd ............................................LUT Writer
resetter.vhd ...........................................Buffer Resetter
rule_numbers_reader.vhd ........................Rule Numbers Reader
rule_vector_reader.vhd ...........................Rule Vector Reader
rule_writer.vhd ...........................................Rule Writer
send_buffer_mux.vhd ...........................Send Buffer Multiplexer
toplevel.vhd.in ..................Toplevel; preprocessed to toplevel.vhd

vhdl/modules/cellular_automata
cellular_automata.vhd ............................Cellular Automaton
live_counter.vhd ........................................Live Counter
lut_configurable.vhd ...............................Configurable LUT
sblock.vhd ...............................................Single sblock
sblock_matrix.vhd ......................................Sblock Matrix

vhdl/modules/communication
communication.vhd .................PCI Express communication module
communication_sim.vhd ........ Simulation version which exposes buffers
rq_special.vhd ................................Special Request Handler
rx_engine.vhd ..........................Reception Engine: Parses TLPs
tx_engine.vhd .......................Transmission Engine: Builds TLPs
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vhdl/modules/development
cell_fetcher.vhd .........................................Cell Fetcher
development.vhd ..........................................Development
hits_to_numbers.vhd ........................Hits To Numbers processor
hits_to_vector.vhd ...........................Hits To Vector processor
rule_fetcher.vhd .........................................Rule Fetcher
rule_tester.vhd ................................Single-rule Rule Tester
rule_tester_multi.vhd ..........................Multi-rule Rule Tester
rule_testers_multi.vhd ...............Multiple multi-rule Rule Testers

vhdl/modules/fetch
fetch.vhd ....................................................... Fetch
fetch_communication.vhd ........................Fetch Communication
fetch_handler.vhd ......................................Fetch Handler

vhdl/modules/fitness
dft.vhd ..........................................................DFT
dsp_wrapper.vhd .........................................DSP Wrapper
fitness_dft.vhd ..........................................DFT Fitness
fitness_live_counter.vhd ..........................Live Count Fitness
twiddles.vhd ............................DFT twiddle factors generator

vhdl/modules/utility
bit_counter_32.vhd ...................Counts number of ones in 32 bits
bit_counter_N.vhd .....................Counts number of ones in N bits
bram_1toN.vhd .......................................1-in N-out BRAM
bram_tdp.vhd ........................................ Dual-port BRAM
combiner.vhd ................................................Combiner
fifo.vhd .........................................................FIFO
selector.vhd ..................................................Selector
shifter.vhd ..............................................Static shifter
shifter_dynamic.vhd ..................................Dynamic shifter
shift_register.vhd ......................................Shift register

vhdl/packages
functions.vhd .........................................Utility functions
instructions.vhd .................................... Instruction codes
types.vhd ....................................Custom type declarations

vhdl/sp605
constraints.ucf.in .........Constraints; preprocessed to constraints.ucf
pcie_wrapper.vhd ..................PCI Express Endpoint Core wrapper
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vhdl/testbenches
test_template.vhd .................................Testbench template
test_dft.vhd ...........................................DFT testbench
test_dsp_wrapper.vhd .........................DSP Wrapper testbench
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ISA 1 INTRODUCTION

1 Introduction

This document is a complete specification of the instruction set for the Cellular Au-
tomata Research Platform. It documents all effects and possible side effects of every
instruction.
Unless otherwise stated, an instruction completes in one cycle. However, keep in mind
that multi-word instructions require multiple cycles to send over PCI Express.
When a bit vector is broken into multiple words, the least significant part is always listed
first.
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Instructions

Each instruction is 256 bits and consists of a 5-bit operation code, a 3-bit length field
and up to 248 bits of parameters.
The operation code specifies what kind of instruction it is, and how the parameters
should be parsed.
The length field is used to improve communication speed by only transmitting the nec-
essary parts of an instruction; It is zero-extended back to 256 bits by the fetch module.
The field directly specifies the number of words after the first that are sent.
The parameters are of different types and lengths for each instruction. Please see the
individual instruction pages.

Instruction Format
012345678910111213141516171819202122232425262728293031

Parameters (low) Length OpCode
012345678910111213141516171819202122232425262728293031

Parameters (higher)

...

2
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Rules

Rules consists of conditions for each cell in the neighborhood and a result that will be
applied to the cell if the conditions match.
Each condition contains a type, a state and a bit for each that marks if it should be
checked. The result format is identical except for that the check bits are exchanged with
change bits that mark which parts of the cell should change if all conditions match.
In the formats below, [type bits] is assumed to be 5 and [states bits] 1 for the purpose
of having everything nicely align to bytes.

Rule Format
012345678910111213141516171819202122232425262728293031

Condition X– Condition X+ Condition Self Result
012345678910111213141516171819202122232425262728293031

Condition Z– Condition Z+ Condition Y– Condition Y+

Condition Format
01234567

Type Check T State Check S

Result Format
01234567

Type Change T State Change S

Notes

For a rule to be counted as a hit, all conditions must match and at least one change bit
must be set.
Conditions for Z are ignored when [matrix depth] is 1.
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LUTs

The indexing for the look-up tables is (Z–,Z+,Y–,Y+,X–,X+,Self). For each of these
indexes, the next cell state is specified. The least significant index is written first (to the
right).
In the format below, [state bits] is assumed to be 1 since it is the only value currently
supported. This allows the entries for (Y–,Y+,X–,X+,Self) to fit exactly within one
word.

LUT Format
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 00
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 01
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 10
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 11

Notes

The Z parts are ignored when [matrix depth] is 1.
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2 General Instructions

This section covers instructions that are not used directly or do not fit into any of the
other categories.

5
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No Operation
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0

Format

nop()

Purpose

To do nothing for one cycle.

Description

Nothing is done for one cycle.

6
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Read Information
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 1

Format

read_information()

Purpose

To retrieve information about the system.

Description

The following words are put into the Send Buffer.
012345678910111213141516171819202122232425262728293031

[matrix depth] [matrix height] [matrix width] [matrix wrap]
012345678910111213141516171819202122232425262728293031

[counter bits] [counter amount] [type bits] [state bits]
012345678910111213141516171819202122232425262728293031

[rule amount]
012345678910111213141516171819202122232425262728293031

[fitness parameters] [fitness words] [fitness id]

Notes

This instruction takes 4 cycles.
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Read Fitness
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 1 0

Format

read_fitness()

Purpose

To retrieve a fitness value.

Description

[fitness words] words are transfered from the Fitness Buffer to the Send Buffer.

Notes

This instruction takes [fitness words] cycles.
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Swap Cell Storage
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 0 0

Format

swap_cell_storage()

Purpose

To swap the contents of the two brams within the cell storage.

Description

Cell BRAM A and Cell BRAM B are remapped so that the contents appear to have been
swapped.
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Reset Buffers
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 0 1

Format

reset_buffers()

Purpose

To clear the Rule Vector, Live Count and Fitness Buffers.

Description

The read and write pointers of the circular FIFO buffers are set to 0. This makes them
appear to be empty.

Notes

If the Fitness module is processing data, the contents of the Live Count and Fitness
Buffers may become undefined.
If the Fitness buffer is full, this incruction should be called an additional time after any
pending data from Fitness has been transfered.

10
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3 Development Instructions

This section covers all instructions affecting the development module. This includes
writing rules, setting active rules, running development and reading data for which rules
have triggered.

11
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Read Rule Vectors
012345678910111213141516171819202122232425262728293031

N 0 0 0 0 0 0 1 0

Format

read_rule_vectors(N)

Purpose

To retrieve N rule vectors.

Description

N rule vectors are placed into the Send Buffer. Each consists of [rule amount] bits,
where the first bit (rule zero) is always 1. The Send Buffer is word-aligned after each
rule vector by padding with 0.

Example

Assume a system with [rule amount] set to 48, where rules 13 and 47 have triggered.
read_rule_vectors(1) will put the following words into the Send Buffer.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes

This instruction takes [words per rule vector] * N cycles.
When there are no rule vectors available and less than N have been sent, this instruction
waits.

12
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Read Rule Numbers
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 1 1

Format

read_rule_numbers()

Purpose

To retrieve the last rule that triggered for each cell during the previous development
step.

Description

Rule numbers for the entire matrix is put into the Send Buffer. Each consists of log2[rule
amount] bits, sent in raster order (first X, then Y, then Z). A value of 0 means that no
rules triggered. The Send Buffer is word-aligned after each row by padding with 0. If a
rule number would be split across two words, it is instead aligned to the next word.

Example

Assume a system with [matrix depth] set to 1, [matrix height] set to 2, [matrix width]
set to 3 and [rule amount] set to 256. If rule 2 triggered for all cells in the fist row and
rule 8 for all in the second, read_rule_numbers() will put the following words into the
Send Buffer.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [matrix width] (MX) and [rule amount] (RA).

T = MZMY

⌈
MX

max
(⌊

32
dlog2 RAe

⌋
, MX

)
⌉

+ 1
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Write Rule
012345678910111213141516171819202122232425262728293031

? 0 1 0 0 1
012345678910111213141516171819202122232425262728293031

INDEX
012345678910111213141516171819202122232425262728293031

RULE

Format

write_rule(RULE, INDEX)

Purpose

To write a development rule.

Description

RULE is written to Rule BRAM at address INDEX. The length of RULE varies depending
on [matrix depth], [type bits] and [state bits]. It is sent as one continuous piece spanning
multiple words. The instruction length field is adjusted accordingly.

Notes

INDEX is cropped to the number of bits in [rule amount].
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Set Active Rules
012345678910111213141516171819202122232425262728293031

N (low) 0 0 1 0 1 0 1 0
012345678910111213141516171819202122232425262728293031

N (high)

Format

set_rules_active(N)

Purpose

To set the number of rules that are currently active, so others can be skipped to reduce
development time.

Description

Rules 1 to N is set to active (rule 0 is reserved). If N is 0, no rules will be set to
active.

Notes

N is cropped to the number of bits in [rule amount]. If this is 16 or less, the second
word can be discarded (and instruction length field set to 0).
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3 DEVELOPMENT INSTRUCTIONS CARP

Develop
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 0 0

Format

develop()

Purpose

To perform development on all cells.

Description

The cells in Cell BRAM A are fetched and tested against all active rules. If a rule
matches a cell, the state and/or type of the cell is changed based on the rule. Rules of
higher index override those of lower index. The developed cells are then stored in Cell
BRAM B.
The lastly matched rule of each cell is stored in Rule Number BRAM, and a list of all
rules with a match is stored to the Rule Vector Buffer.

Notes

An overridden rule will be listed as having a match, but all its effects are discarded.
The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [rules active] (RA) and [rules tested in parallel] (RT IP ).

T3D = MZMY max
(

RA + 1
RT IP

, 7
)

+ 6

T2D = MY max
(

RA + 1
RT IP

, 5
)

+ 4
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ISA 4 CELL STORAGE INSTRUCTIONS

4 Cell Storage Instructions

This section covers all instructions for writing and reading states and types to/from the
cell storage.

17



4 CELL STORAGE INSTRUCTIONS CARP

Read One State
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 0 0 0 0 0 4

Format

read_state(Z, Y, X)

Purpose

To retrieve the state of the cell at (Z, Y, X).

Description

The state of cell (Z, Y, X) is put into the Send Buffer. The Send Buffer is then word-
aligned by padding with 0. Accessing cells outside the matrix dimensions yields undefined
states.
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Read All States
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 5

Format

read_states()

Purpose

To retrieve the state of all cells.

Description

The states of all cells are put into the Send Buffer in raster order (first X, then Y, then
Z). The Send Buffer is word-aligned after each row by padding with 0. If a state would
be split across two words, it is instead aligned to the next word.

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [matrix width] (MX) and [state bits] (BS).

T = MZMY

⌈
MX

max
(⌊

32
BS

⌋
, MX

)
⌉

+ 1
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Read One Type
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 0 0 0 0 0 6

Format

read_type(Z, Y, X)

Purpose

To retrieve the type of the cell at (Z, Y, X).

Description

The type of cell (Z, Y, X) is put into the Send Buffer. The Send Buffer is then word-
aligned by padding with 0. Accessing cells outside the matrix dimensions yields undefined
types.
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Read All Types
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 7

Format

read_types()

Purpose

To retrieve the types of all cells.

Description

The types of all cells are put into the Send Buffer in raster order (first X, then Y, then
Z). The Send Buffer is word-aligned after each row by padding with 0. If a type would
be split across two words, it is instead aligned to the next word.

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [matrix width] (MX) and [type bits] (BT ).

T = MZMY

⌈
MX

max
(⌊

32
BT

⌋
, MX

)
⌉

+ 1
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4 CELL STORAGE INSTRUCTIONS CARP

Write One State
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 1 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

STATE

Format

write_state(Z, Y, X, STATE)

Purpose

To write one state.

Description

State (Z, Y, X) in Cell BRAM A is set to STATE.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
STATE is cropped to [state bits].
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
If X is outside the defined matrix, nothing will happen.
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Write Row of States
012345678910111213141516171819202122232425262728293031

Z Y X ? 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

STATES

Format

write_states(Z, Y, X, STATES)

Purpose

To write one row (or as many can fit an instruction) of states.

Description

STATES is a list of states in little-endian order. It is either [matrix width] or as many
can fit 224 bits in length. Each state is [state bits] long.
The states are written to Cell BRAM A at row (Z, Y). They are offset so the first state
is written to position X within the row. States offset to [matrix width] or more are
discarded.
The length of STATES varies depending on [matrix width] and [state bits]. It is sent as
one continuous piece spanning multiple words. The instruction length field is adjusted
accordingly.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
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4 CELL STORAGE INSTRUCTIONS CARP

Write One Type
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 1 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

TYPE

Format

write_types(Z, Y, X, TYPE)

Purpose

To write one state.

Description

Type (Z, Y, X) in Cell BRAM A is set to TYPE.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
TYPE is cropped to [type bits].
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
If X is outside the defined matrix, nothing will happen.
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ISA 4 CELL STORAGE INSTRUCTIONS

Write Row of Types
012345678910111213141516171819202122232425262728293031

Z Y X ? 0 1 1 1 1
012345678910111213141516171819202122232425262728293031

TYPES

Format

write_types(Z, Y, X, TYPES)

Purpose

To write one row (or as many can fit an instruction) of types.

Description

TYPES is a list of types in little-endian order. It is either [matrix width] or as many can
fit 224 bits in length. Each type is [type bits] long.
The types are written to Cell BRAM A at row (Z, Y). They are offset so the first type
is written to position X within the row. Types offset to [matrix width] or more are
discarded.
The length of TYPES varies depending on [matrix width] and [type bits]. It is sent as
one continuous piece spanning multiple words. The instruction length field is adjusted
accordingly.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
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4 CELL STORAGE INSTRUCTIONS CARP

Fill Cells
012345678910111213141516171819202122232425262728293031

TYPE STATE 0 0 0 0 1 0 1 0

Format

fill_cells(STATE, TYPE)

Purpose

To set the state and type of all cells.

Description

STATE and TYPE is written to each cell in Cell BRAM A.

Notes

STATE is cropped to [state bits].
TYPE is cropped to [type bits].
This instruction takes [matrix depth] * [matrix height] cycles.
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ISA 5 CELLULAR AUTOMATON INSTRUCTIONS

5 Cellular Automaton Instructions

This section covers all instructions affecting the Cellular Automaton. This includes
writing look-up tables, configuring the CA, running the CA, and reading back the new
states.
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5 CELLULAR AUTOMATON INSTRUCTIONS CARP

Write LUT
012345678910111213141516171819202122232425262728293031

? 0 1 0 0 0
012345678910111213141516171819202122232425262728293031

TYPE
012345678910111213141516171819202122232425262728293031

LUT

Format

write_lut(LUT, TYPE)

Purpose

To write a type to lookup table conversion entry.

Description

LUT is written to LUT BRAM at address TYPE. The length of LUT varies depending
on [matrix depth]. It is sent as one continuous piece spanning multiple words. The
instruction length field is adjusted accordingly.

Notes

TYPE is cropped to [type bits].
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Configure
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 1 0

Format

config()

Purpose

To configure the sblock matrix.

Description

The cells in Cell BRAM B are fetched along with the LUTs corresponding to each of
their types. The LUTs and states are then written to the sblocks.

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ) and [lut configuration bits] (LUTCB).

T3D = MZMY
128

LUTCB

+ 2

T2D = MY
32

LUTCB

+ 2
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5 CELLULAR AUTOMATON INSTRUCTIONS CARP

Readback
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 1 1

Format

readback()

Purpose

To read back cell states from the sblock matrix.

Description

The states of all sblocks are written to Cell BRAM B. Types in Cell BRAM B are
preserved.

Notes

This instruction takes [matrix depth] * [matrix height] cycles.
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Step
012345678910111213141516171819202122232425262728293031

STEPS 0 0 0 1 0 0 0 1

Format

step(STEPS)

Purpose

To perform updates of the sblock matrix.

Description

The sblock matrix is updated STEPS times. After each step, the number of live cells
(state equals 1) are counted and stored in the Live Count buffer.

Notes

This instruction takes STEPS + 1 cycles.
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ISA 6 CONTROL FLOW INSTRUCTIONS

6 Control Flow Instructions

This section covers all instructions that are related to the program memory. This includes
those for storing, starting and exiting programs, in addition to control flow within the
programs.
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6 CONTROL FLOW INSTRUCTIONS CARP

Break
012345678910111213141516171819202122232425262728293031

0 0 0 1 1 0 0 0

Format

break_out()

Purpose

To break out of a running program and restore control to the host.

Description

The Fetch module exits [read from memory] mode and enters [read from communication]
mode.

Notes

This has no effect if the Fetch module is already in [read from communication] mode.
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Store
012345678910111213141516171819202122232425262728293031

ADDRESS 0 0 0 1 1 0 1 0

Format

store(ADDRESS)

Purpose

To begin storage of a program to internal memory.

Description

The Fetch module exits [read from communication] mode and enters [save to memory]
mode. The next instruction will be saved at address ADDRESS, and then each address
thereafter.

Notes

This will be saved as a nop if the Fetch module is already in [save to memory] mode.
ADDRESS is cropped to [program counter bits].
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6 CONTROL FLOW INSTRUCTIONS CARP

End
012345678910111213141516171819202122232425262728293031

0 0 0 1 1 0 1 1

Format

end()

Purpose

To end storage of a program to internal memory.

Description

The Fetch module exits [save to memory] mode and enters [read from communication]
mode.

Notes

This will be parsed as a nop if the Fetch module is already in [read from communication]
mode.

36



ISA 6 CONTROL FLOW INSTRUCTIONS

Jump
012345678910111213141516171819202122232425262728293031

ADDRESS 0 0 0 1 1 1 0 0

Format

jump(ADDRESS)

Purpose

To begin execution of or jump within a program stored to internal memory.

Description

If the Fetch module is not in [read from memory] mode, it exits [read from communica-
tion] mode and enters [read from memory] mode. The program counter is then updated
so the next instruction is the one at address ADDRESS.

Notes

ADDRESS is cropped to [program counter bits].
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6 CONTROL FLOW INSTRUCTIONS CARP

Jump Equal
012345678910111213141516171819202122232425262728293031

ADDRESS COUNTER 0 0 1 1 1 1 0 1
012345678910111213141516171819202122232425262728293031

VALUE

Format

jump_equal(ADDRESS, COUNTER, VALUE)

Purpose

To begin execution of or jump within a program stored to internal memory if a counter
matches a value.

Description

If counter COUNTER is equal to VALUE, this instructions is exactly like jump(ADDRESS).
Otherwise, it is discarded.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
ADDRESS is cropped to [program counter bits].
VALUE is cropped to [counter bits].
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Increment Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 0

Format

counter_increment(COUNTER)

Purpose

To increment a counter.

Description

Counter COUNTER is incremented by 1. If counter COUNTER is at maximum, it
instead becomes 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
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Reset Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 1

Format

counter_reset(COUNTER)

Purpose

To reset a counter.

Description

Counter COUNTER is set to 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
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The Cellular Automata Research Platform:
Communication and Verification

Per Thomas Lundal – Supervised by Gunnar Tufte

Abstract—Research into evolvable hardware has long
been performed at NTNU. In 2003, a cellular automata
research platformwas created with the use of an FPGA.
In expectation of new hardware with a larger FPGA,

the platform was updated and extended in 2014. It was
optimized to provide a speedup of 4 for most operations
by taking advantage of increased resources. However,
the new PCI Express interface was not implemented
and the design was only verified in simulation.
The goal of this project was to finalize the platform,

such that the new features and improved speed could
be taken advantage of. The first objective towards that
end was to replace the old communication interface.
The second was to verify that the new design worked
correctly when implemented in hardware.
This paper details the implementation of the new

communication interface, both in hardware and soft-
ware. Then, the previously upgraded design is imple-
mented and tested in the new hardware.
Implementation of the new communication interface

is a success. However, testing shows that there are a
lot of issues with the upgraded design. Some issues
were possible to fix within the alotted time, but several
critical remain.

I. Introduction
Evolvable hardware (EHW) is a field of science where

evolutionary algorithms (EAs) are used in the creation of
specialized hardware. EAs simulate mechanisms found in
biological life, such as selection, reproduction and muta-
tion. The goal is to optimize fitness, the ability to survive
in the competition for being the best solution. EAs can
quickly find approximate solutions to hard problems, and
then gradually refine them into good solutions.
An interesting feature is that EAs can find ways to

exploit hardware in ways that human designers cannot
comprehend [1]. This can be due to complex parallel
interactions, or usage of properties that are not fully
understood [2].
Technologies related to EHW, including a common EA

and hardware platforms are presented in Section II.
Evolvable hardware has been an area of research at

NTNU for more than a decade. In 2002, NTNU invested in
dedicated FPGA hardware with the intent of building an
EHW platform. The purpose was to create a platform for
experimentation with evolution and development within a
cellular automata (CA).
The initial work was done by Djupdal, before being

extended by Aamodt. The CA was implemented as a
matrix of sblocks, reprogrammable CA cells designed
specifically for usage with evolution. It is connected to a
development unit which can simulate growth and change

in the sblock matrix. The hardware platform is connected
to and controlled by a computer over a PCI connection.

A general use-case for the platform is to have the
computer run a genetic algorithm, where the genotype
represents the initial CA state and development rules.
Then, the CA is initialized and developed to produce a
phenotype, which is executed to produce a fitness value.

In expectation of new hardware with a larger FPGA and
faster PCI Express connection, Støvneng refurbished the
design in 2014. He took advantage of the added resources
to greatly improve the performance of the platform, giving
a speedup of 4 or more for most operations. Additionally,
he extended the CA into 3D and added a DFT. However,
since the hardware did not arrive in time, the new design
was only tested in simulation and the communication
interface was not upgraded.

An in-depth explanation of the platform’s features,
functionality and iterations is presented in Section III.

The task of this project is to finish the new platform
by implementing a new PCI Express communication unit,
and to verify that everything is functional in hardware.
This will allow the new platform, which is both faster and
more feature-rich, to be taken into use. The motives are
further detailed in Section IV.

The implementation of the new communication unit is
detailed in Section VI, while the verification process and
results are detailed in Section VII.

Challenges related to setting up the new hardware
platform and testing is detailed in in Section VIII, along
with proposed design changes and other future work.

Section IX concludes this paper.

II. Technology
The field of EHW is comprised of many technologies, but

only a few are relevant for this paper. Those are genetic
algorithms, development, cellular automata, FPGAs and
sblocks. Additionally, PCI Express is relevant for the new
communication unit.

A. Genetic algorithms
A genetic algorithm (GA) is a very common type of EA.

It represents each solution as a genotype, a binary string
used as a blueprint to create the solution itself, called a
phenotype. The genotype is comparable to nature’s DNA,
and it is this genetic material which is modified in the
evolutionary process.

The GA process is shown in Fig. 1. First, a base popu-
lation with random genotypes is generated. Then, each
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Fig. 1. A genetic algorithm. The cycle is broken when the fitness is
above a given threshold.

phenotype is constructed and evaluated using a fitness
function. If a solution has a fitness score above a set
threshold, the process stops. Otherwise, a new population
is created by selecting solutions with high fitness scores,
crossing their genotypes, and mutating the results, before
repeating the process.

B. Development
The process that transforms the genotype into a pheno-

type is called development; it can be regarded as a form
of decompression algorithm [3]. In nature, this process is
seen when a fertilized egg transforms into a multicellular
organism. A conseptual example is shown in Fig. 2.

Fig. 2. An example of one cell developing into six. Additionally, some
cells change type.

Development also allows individuals to adapt to their
environments, making them more robust and scalable [4].

C. Cellular automata
A cellular automaton (CA) is a structure made up of

vast numbers of very simple computational units called
cells. The cells are arranged in a grid, with commu-
nication only permitted between nearby cells according
to a neighborhood. The von Neumann neighborhood is
common for two-dimensional CAs; It includes the cells to
the north, south, east and west, along with itself (center).
An example of this is shown in Fig. 3.

Fig. 3. An excerpt from a 2D CA using a von Neumann neighbor-
hood. All outputs from a given cell carries the same value.

Each cell has a state, which is often a binary number
where 1 represents alive and 0 represents dead. At each

discrete time step, each cell updates its state based on
the states in its neighborhood. The update function is
often specified as a look-up-table (LUT), where the next
state is defined for all possible neighborhood states1. If
all cells implement the same update function then the CA
is uniform, otherwise it is non-uniform.

The update functions determine how complex patterns
and structures emerge within the CA. The emergent be-
havior can be categorized into one of four classes [5].

1) Homogeneous state.
2) Simple periodic structures.
3) Chaotic patterns.
4) Complex patterns and structures.
The latter is the most interesting, providing both the

complexity required for computation and structures re-
quired for storage. It exists in the phase change between
class 2 and 3, known as the edge of chaos [6].

CAs have been shown to be Turing complete [7] [8],
which means they are able to perform any kind of compu-
tation.

D. Field Programmable Gate Array
A Field Programmable Gate Array (FPGA) is a type

of reconfigurable hardware. It can implement any desired
logical operation by configuring and connecting a number
of look-up tables (LUTs) and flip-flops (FFs). FPGAs can
also contain dedicated blocks for addition, multiplication,
memory, and other functions. These elements are grouped
into configurable logic blocks (CLBs), which through a
network of interconnects can be connected to each other or
input/output pins. An example of this structure is shown
in Fig. 4. Note that modern FPGAs consists of thousands
of CLBs and hundreds of I/O pins [9].

Fig. 4. High-level block diagram of an FPGA. An array of con-
figurable logic blocks (CLBs) and input/output blocks (IOBs) are
connected by a network of interconnects.

FPGAs have been the subject of EHW research due to
their reconfigurability, and several researchers have been
successful in evolving working electronic circuits [10] [1].

1 The length of the LUT increases exponentially with the size of the
neighborhood. L = SN where L is the LUT length, S is the number
of possible states and N is the number of cells in the neighborhood.
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However, the resulting circuits have often ended up using
intrinsic properties of the silicon and been very sensitive
to environmental changes.
The trouble with using modern FPGAs for EHW re-

search is that some configuration bitstrings can destroy
the FPGA [11] [12]. This means that the bitstring can not
be used directly as the genotype without complicated tests
to discard the dangerous bitstrings.

E. Sblock
The sblock was introduced as part of a new EHW-

friendly FPGA architecture in [13]. The architecture is
a non-uniform CA with a von Neumann neighborhood,
where the update function of each cell is independently
configurable at run-time. The cells, known as sblocks, are
very simple structures; they consist of a configurable look-
up-table (LUT) and a flip-flop (FF), as shown in Fig. 5.

Fig. 5. Detailed block diagram of an sblock. The LUT can be
reconfigured on-the-fly to implement any logical function.

The greatest benefit of using sblocks for EHW research
is that there is no risk of damage or exploitation of intrinsic
properties in the silicon. Additionaly, the simple structure
and hardwired signal routing allows for very efficient area
usage. The likelihood of a mass-produced sblock-FPGA
arriving on the market in the near future is slim. However,
it is possible to implement it virtually within an other
FPGA.

F. PCI Express
The PCI Express interface was designed to tackle the

arising trouble with clocked parallel buses like PCI. The
problem with such buses is that the clock speed can not be
increased beyond a given threshold, as the slightly different
lengths of the wires causes data to arrive at slightly
different times. Reducing the clock period to less than
the variation in arrival time means the data will become
corrupted. This problem is exacerbated with increasing
bus size.
PCI Express is therefore based on serial communica-

tion over differential pairs (lanes2) without the need for
a reference clock [14]. This allows an extremely fast
clock speed compared to a parallel bus, and much greater
bandwidth in total. PCI Express consists of three layers;
the physical layer, the data link layer and the transaction
layer, structured as shown in Fig. 6.

2 PCI Express operates in full duplex mode, which means that
each lane has an independent differential pair in each direction. 1, 2,
4, 8, 16 or 32 lanes are supported, but data is striped and thus still
transmitted serially.

Data Link Data Link

RX TX

Logical Sub-block

Electrical Sub-block

Physical

RX TX

Logical Sub-block

Electrical Sub-block

Physical

Transaction Transaction

Fig. 6. High-level diagram showing the layered structure of PCI
Express. (Reprinted from [14])

The transaction layer’s primary responsibility is the
creation and parsing of transaction layer packets (TLPs).
TLPs are used to trigger events or start various transac-
tions, most commonly to initiate read and write requests3.
Most requests entail the return of a completion TLP

containing the requested data or other information. TLPs
consists of multiple 32-bit double words (DW), where the
first is a common header describing the type of packet.

The data link layer ensures integrity by adding error
detection codes to outgoing TLPs and performing error
detection and correction on incoming TLPs. It is also
responsible for retransmission if corruption occurs.

The physical layer is responsible for serialization and
deserialization of the data stream. Each byte is padded
with two extra bits (8b/10b encoding) to allow clock
recovery.

III. Previous Work
The Cellular Automata Research Platform (CARP)

has been the subject of three previous master theses at
NTNU. The original implementation was made by Djupdal
in 2003. It was then extended with a range of various
output methods by Aamodt in 2005. Finally, it was further
extended and optimized in expectation of new hardware
by Støvneng in 2014.

A. Conception
In 2002, NTNU invested in a CompactPCI computer

with a NallaTech BenERA FPGA board to be used for
research within the field of evolutionary hardware. The
task of developing a platform for the system, based on a
matrix of sblocks, fell to Djupdal [15].

An overview of the resulting hardware platform is shown
in Fig. 7. It consists of the mentioned sblock matrix, block
RAM (BRAM) for storing the state and type of each cell, a
development unit, control logic, and a PCI communication
unit.

The system is meant to be controlled by a computer
running a genetic algoritm. A common flow of operation

3 Read and write requests are directed at one of up to six base
address registers (BARs). They represent internal memory areas that
can be anywhere from a few bytes to several gigabytes in size.
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Fig. 7. High-level block diagram of the hardware platform after
Djupdal’s original work.

is to initialize the system with the genotype, develop it
into its phenotype, run the SBM, and send the new states
back to the computer. The computer then uses the newly
received state data to calculate a fitness score.
The system is initialized by writing states and types to

BRAM A, in addition to storing development rules and
LUT conversion rules. Then a development step can be
performed by reading cell types from BRAM A4, testing
development rules, and writing the (possibly changed)
types back to BRAM B. The development unit tests 8
rules on 2 cells each cycle in raster order. Optionally, the
BRAMs can be logically swapped and further develop-
ment steps performed. The SBM can then be configured
by translating the types in BRAM B into LUT entries
according to the LUT conversion rules, before being run
for a desired amount of cycles. Afterwards, the new states
in the SBM can be read back into BRAM B, swapped into
BRAM A, and sent to the computer.
The design is split into two clock domains; the commu-

nication unit uses 40 MHz to be able to interface with
PCI, while the rest uses 80 MHz for higher performance.

B. Extension
There was one major bottleneck in the original design.

To calculate the fitness of an individual, the state of each
cell had to be transferred to the computer over the PCI
interface. Having a dedicated hardware unit would greatly
improve the performance. Additionaly, it was desired to
have more information about the development process.
The task of realizing this fell to Aamodt [16].
An overview of the hardware platform with Aamodt’s

additions is shown in Fig. 8. The additions consists of a
run-step function that calculates the number of live cells,
BRAM to store the numbers, a fitness function, and two
information outputs from the development unit.

4 After the first 8 rules have been tested on all cells, center cell
types are read from BRAM B instead. This is needed to prevent the
result of a rule in an earlier iteration from being deleted if no rules
trigger in a later iteration.

Fig. 8. High-level block diagram of the hardware platform after
Aamodt’s work. Additions are highlighted in green.

The rule vector BRAM stores lists of which rules were
triggered and not for the last 256 development steps.
The lists are implemented as bit-vectors where each bit
represents the status of a rule for a single development
step. The development step BRAM is more detailed; it
stores which rule was triggered for each cell. However, it
only has storage space for one development step.

The run-step function calculates the number of live cells
after each SBM update by using a large adder tree. The
numbers are stored in run-step BRAM for later usage by
the fitness function, which is replacable.

C. Renovation
In expectation of receiving new hardware with a larger

and faster FPGA, there was a demand to optimize the
platform by taking advantage of the increased resource
pool. Extending the platform into the third dimension was
also a lucrative thought, as doing so allows more complex
signal pathways to form within the cellular automata. It
was also desired to have a discrete fourier transform (DFT)
for interpretation of the RSF data; it should give very
useful data according to Berg’s research [17]. The task of
realizing this was taken on by Støvneng [18].

An overview of the hardware platform with Støvnengs
additions and optimizations is shown in Fig. 9. The only
addition is the DFT, but nearly all units has been opti-
mized, yielding a speedup of 4 for most operations.

Unfortunately, due to some challenges with manufactur-
ing, Støvneng was unable to get hold of the new hardware
for the duration of his project. The system was therefore
only verified in simulation, and the PCI communication
unit was not upgraded for the PCI Express connection on
the new board.
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Fig. 9. High-level block diagram of the hardware platform after Støv-
neng’s work. Additions are highlighted in green, and optimizations
and 3D modifications in orange.

IV. Motivation

Currently, CARP is only usable in simulations, which
are extremely slow and therefore practically unusable.
Implementing a PCI Express communication unit should
make the new platform operational, allowing it to be used
for research.
The new platform is about 4 times faster than the old

and support larger sblock matrices. It also has the new
and exciting DFT, which is shown to produce very useful
data. 3D is also exiting as it allows much more complex
communication pathways to form within the CA.
Verification of previous modifications are necessary since

it was only tested in simulation. The path from a behav-
ioral description to an implementation using LUTs and
FFs is long and complex; what functions in simulation does
not necessarily function when implemented.

V. Development Platform

Multiple weeks into this project, several months after
the end of Støvnengs project, there were still no signs of
the new hardware. To prevent the project from halting
dead in its tracks, a decision was taken to order slightly dif-
ferent hardware. The significant difference to the original
system is reduced size of the FPGA, a Spartan-6 LX45T
instead of a Spartan-6 LX150T, which entails around 70%
less available resources. Luckily, the hardware design can
be scaled down to fit the smaller chip by reducing the
size of the sblock matrix, allowing for implementation of
PCI Express and verification of the complete system in
hardware.

A. Spartan-6 SP605 Evaluation Platform
The Spartan-6 SP605 Evaluation Platform is essentially

a board with the Spartan-6 LX45T FPGA wired to every
useful peripheral imaginable. It has connections for PCI
Express5, ethernet, DVI, USB, flash card, JTAG, LEDs,
switches, and more. However, the only peripherals utilized
in this paper are PCI Express, and JTAG. An overview of
the system is shown in Fig. 10.

Spartan-6
XC6SLX45T-3FGG484

U1

PCIe 125 MHz Clk
SMA REFCLK
SFPCLK
FMC GBTCLK

Bank 0
2.5V

Bank 1
2.5V

Bank 3
1.5V

= Level Shifter

DVI IIC Bus

Bank 2
2.5V

Part of
FMC-LPC
Expansion
Connector

LED
DIP Switch
User SMA x2

1-Lane I/Fs:
PCIe Edge Conn.
SMA x4 SFP
FMC-LPC

10/100/1000
Ethernet PHY,
Status LEDs,
and Connector

SFP IIC Bus

JTAG

USB JTAG Logic
and USB Mini-B
Connector

DDR3
Component
Memory

Pushbuttons
DIP Switch

LED,
DIP Switch

SPI x4,
SPI Header

Part of FMC-LPC
Expansion Conn.

GPIO Header

USB UART and
USB Mini-B
Connector

System ACE

JTAG JTAG

MPU I/F

DVI Codec and
DVI Connector

Parallel Flash

Main IIC Bus

UG526_01_110409

DED MGTs

L/S

L/S

L/S

Fig. 10. High-level block diagram of the SP605 and its peripherals.
Peripherals utilized in this paper are highlighted in gray. (Modified
reprint from [19])

The switch and jumper configurations of the SP605 are
set to factory defaults, with the exception of SW1 which
is set to 10.

B. Hardware setup
Due to the experimental nature of testing a new hard-

ware platform, two computers were used in this project,
as shown in Fig. 11. One is the main development work-
station, used for coding and synthesis; it has a JTAG
connection to the SP605 over USB, which allows it to
upload new designs. The other is the host for the SP605,
which is mounted in a PCI Express expansion slot.

Fig. 11. High-level block diagram of the hardware setup.

The setup allows a new design to be uploaded and tested
on the SP605 without disrupting the workflow of the main
workstation, due to the power-cycle required to reset the
PCI Express connection.

C. Software setup
The operating system on both computers is Linux Mint;

version 16 on the development computer and 17 on the test
5 Even though the PCI Express finger has lines for power, they are

not connected on the SP605. This means an external power source
has to be connected.
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computer. Linux Mint is currently one of the most popular
linux distributions, along with Ubuntu, which it is based
upon [20]. This means that procedures and software used
and created in this paper should work on most systems.
Xilinx ISE version 13.3 was used for hardware design

and synthesis, while ISim was used for simulations. The
third-party USB cable driver from [21] was used for JTAG,
as explained in Section VIII-A. The software API was
compiled with GCC version 4.8.2.

VI. Implementation
Fig. 12 shows the changes to the hardware platform.

The old COM40 unit has been replaced by a new commu-
nication unit and a compatibility layer. It communicates
with a new software api which uses Linux’ built-in drivers
for PCI Express.

Fig. 12. High-level block diagram of the current hardware platform.
Additions are highlighted in green.

A. Detailed overview
The new communication unit is based on Xilinx’ ref-

erence PCI Express programmed input/output design. It
consists of the Xilinx PCI Express endpoint core, recep-
tion and transmission engines, data buffers, and a special
request handler, as shown in Fig. 13.
The endpoint core completely handles the physical and

data link layers, and all TLPs related to configuration
and establishment of the PCI Express connection. Other
TLPs, such as read and write requests, are presented on
an AXI4-Stream interface [22]. The reception engine is
responsible for parsing TLPs and either writing received
data to the reception buffer or notifying the transmission
engine about a read request. The transmission engine is
responsible for building completer TLPs to respond to
read requests, using data from the transmission buffer.

Fig. 13. Detailed block-diagram of the PCI Express communication
module.

The request handler listens to the read requests provided
by the reception engine, and can override the transmission
engine to respond to special requests.

B. PCI Express Endpoint Core
Several Spartan-6 FPGAs, including the one used in

this project, contain a special-purpose hardware block for
implementation of PCI Express. The block completely
handles the physical and data link layers, with the trans-
action layer left for the user.

To make use of the block, Xilinx provides the Spartan-6
Integrated PCI Express Endpoint Core; version 2.3 was
used in this project. This core additionally takes care
of all TLPs related to configuration of the PCI Express
connection. Other TLPs, such as read and write requests,
are presented on an AXI4-Stream interface [22].

The endpoint core is configured with two memory re-
gions, both 4 kB in size6. The first memory region
(BAR0) is used for normal communication, while the
second (BAR1) is used for special requests. The separation
is mostly conseptual as both regions are treated as one
data stream. The difference is that the special request
handler kicks in for read requests to BAR1.

C. Reception engine
The reception engine is implemented as a simple state

machine, as shown in Fig. 14.

Fig. 14. State machine for the reception engine.

Until the endpoint core presents valid data, the state
machine remains in Idle. When it does, the data is stored,
and the TLP type is checked. If it is a read or write request,
the state machine continues down the corresponding path,
otherwise the remaining data is discarded. The remaining

6 The smallest memory region that can be memory-mapped is one
page. The default page size in Linux is 4 kB.
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portion of the TLP headers are then parsed in the DW1
and DW2 states. For read requests, the state machine
waits in ReadWait until the transmission engine is ready
to accept a new read request, and then proceeds to Idle.
For write requests, the state machine stays in WriteData,
where one DW of data is written to the reception buffer
each cycle, for the length of the packet, and then proceeds
to Idle.

D. Transmission engine
The transmission engine is implemented as a simple

state machine, as shown in Fig. 15.

Fig. 15. State machine for the transmission engine.

Until the reception engine signals a read request, the
state machine remains in Idle. When a read request is
signaled by the reception engine, the state machine begins
to traverse the DW path. The DW0, DW1 and DW2
states each transmit one DW of the completer TLP header.
Then if the special request signal is set, it procceds to
CompleteSpecial, where it transmits data presented by the
request handler. Otherwise, it proceeds to CompleteData
where it transmits one DW of data from the transmission
buffer each cycle. When the requested number of DWs has
been transmitted it proceeds back to Idle.

E. Request handler
The request handler continually listens to the read

requests presented by the reception engine. If the request
is targeting the primary memory area (BAR 0), it is a
normal read request and the transmission engine is allowed
to proceed as usual. Otherwise, it is a special request and
the transmission engine is overridden.
The kind of special request is determined by the address

of the read request, and handled thereafter. There are
currently four special requests implemented, as shown in
Table I.

TABLE I
Special requests

Address Request
0x00 Get transmission buffer data count
0x01 Get transmission buffer available space
0x02 Get reception buffer data count
0x03 Get reception buffer available space

Note that each of the implemented special requests
assumes a read request length of one DW. If the request
has a greater length, the returned data is simply repeated
to fill the packet.

F. Buffers
The buffers are implemented as first-in first-out (FIFO)

queues using block RAM (BRAM) and two counters. The
counters determine the addresses that are written to and
read from, and are incremented when the write or read
signals are asserted. Fig. 16 shows how the FIFO is used
to buffer two words.

Clock

Data In A B

Data Out A B

Data Count 0 1 2 1 0

Data Read

Data Write

Fig. 16. Wave diagram for the FIFO buffer, showing two consecutive
writes followed by two consecutive reads.

Notice how the read signal needs to be asserted be-
fore the clock tick when data is read to ensure correct
consecutive reads. This is due to the BRAM used in the
FIFO, which updates at clock ticks. To have correct data
available for a read in the following cycle, the address
therefore has to be updated before the clock tick (by
asserting the read signal).

G. Compatibility layer
Due to the difference in wordsize between the new and

old communication units (32 vs 64 bits), a compatibility
layer is added between the communicaton unit and the
control unit. This allows the control unit and the rest of
the design to remain unchanged, making the replacement
transparent.

The compatibility layer contains two very simple state
machines. One combines two 32-bit words from the com-
munication unit into 64-bit words for the control unit. The
other splits 64-bit words from the control unit into two 32-
bit words for the communication unit.

H. Software API
The communication part of the new software API is split

into two parts.
The first is a general interface for connecting to PCI

and PCI Express devices without using a custom driver.
It takes advantage of Linux’ automatic population of
/sys/devices/pci* with files representing the memory re-
gions of all PCI and PCI Express devices. The directory is
searched by vendor and device id, and the corresponding
memory regions is memory-mapped into the program.

The second is an interface specifically for the com-
munication unit. It provides open, close, read and write
functions similar to the old BenERA interface, in addition
to implementing all special request functions in Table I.
When a read or write operation is initiated, buffers are
checked for available data or space. If there is not enough
present, the program waits and then rechecks.
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VII. Verification
Due to lack of hardware, Støvneng only verified his

changes in simulation. With available hardware and an
updated communication unit, the design can finally be
properly verified.

A. Methodology
The communication unit was tested in hardware by

connecting the output of the reception buffer to the input
of the transmission buffer. Then sample data was sent over
PCI Express to the SP605 and then read back.
The updated hardware design was tested with SBM sizes

of 8x8 for 2D and 8x8x8 for 3D. The tests are detailed in
Appendix A; each one has a short description and a list
of the instructions it verifies. Together, the 11 tests cover
all instructions.
Note that due to some instructions being dependent on

others, it is not always possible to know which instruction
is failing.

B. Results
The communication unit returns the correct data in the

correct order, which means it passes its test.
The 2D design passes all tests except for 6 and 8, while

the 3D design failes test 1, 3, 6, 7 and 8. This means
that the two most crucial components, the SBM and
development unit, is working in neither. The 3D design
also has some additional issues.
The status of each instruction is listed in Table II, while

descriptions of the issues are listed in Section VII-C.
Some issues were solved in the alotted time. They

are not included in these results, but are listed in Sec-
tion VII-D for completeness.

C. Remaining issues
ReadStates prints garbage in top 32 bits. This occurs

due to a buffering error in the LSS unit. However, only
the least 32 bits are used by the api, which means that
this issue only impacts performance and not functionality.
WriteStates and WriteTypes does nothing in 3D. This

issue is only present on the board, not in any simulations,
which makes it hard to track down the cause.
ReadRuleVector sends incorrect data. The first execution

of the instruction produces an extra word; a repetition
of the first. Following executions produces the correct
amount of words, but the order is offset by one.
ReadUsedRules fails for SBM widths less than 16. The

simulator crashes with an index-out-of-bounds error, due
to the instruction treating a [width·4] bits wide signal as if
it is 64 bits wide. How ISE is able to implement the design
despite illegal indexing is a mystery, but the instruction
produces only zeroes when executed on the board.
Development rules does not activate. This issue is also

only present on the board, making it hard to analyze. The
root cause could be with any of the following instructions:
devstep, writeRule and setNumberOfLastRule.

TABLE II
Implementational status of instructions

Instruction Works in 2D Works in 3D
break Yes Yes
clearBRAM Yes Yes
config Yes Undecidable
devstep Undecidable Undecidable
doFitness Undecidable Undecidable
end Yes Yes
jump Yes Yes
jumpEqual Yes Yes
nop Yes Yes
readback Yes Undecidable
readFitness Undecidable Undecidable
readRuleVector No No
readState Yes Yes
readStates Yes Yes
readSums Undecidable Undecidable
readType Yes Yes
readTypes Yes Yes
readUsedRules Undecidable No
resetDevCounter Yes Yes
run Undecidable Undecidable
setNumberOfLastRule Undecidable Undecidable
startDFT Undecidable Undecidable
store Yes Yes
switch Yes Yes
writeLUTConv Undecidable Undecidable
writeRule Undecidable Undecidable
writeState Yes Yes
writeStates Yes No
writeType Yes Yes
writeTypes Yes No

Config does not properly write states in 3D. Simulations
show that the BRAM address fluctuates, causing the states
to be overwritten by 0 in the following cycle.
Runstep causes every state to become zero. When a

runstep is performed, all states in the SBM are reset.

D. Solved issues
States and types were written to the wrong location.

When writing single states or types, a half-row is read
from BRAM, combined with the new data, and written
back to BRAM. Due to the usage of non-implementable
code to specify how the data should be combined, the new
data always ended up in the middle of the half-row.
Development ran indefinitely. Comparison of signals of

different widths always return false. Due to the comparison
of a parameterized signal with a constant, the development
unit would not iterate through the cells, and thus never
finish.
WriteRule did not follow spesification. When the api

transformed a 3D rule struct into an instruction, the
position of up/down and north/south were swapped.
PrintTypes used wrong offsets for decomposition. When

decomposing a row of types into individual types, an offset
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of 5 was used instead of 8. This entailed that the printed
values appeared as garbage.
ReadVector and PrintVector used 32-bit words. The

functions were not updated from using 32-bit to 64-bit
words. ReadVector would therefore expect twice the num-
ber of words provided by the hardware platform, causing
the program to wait for nonexistant data.

VIII. Discussion
A. Challenges
There was a lot of concern during initial hardware

testing, as the SP605 was not detected by the computer.
A slightly curved circuit board led to the belief that there
might be something wrong with the hardware. Luckily, it
proved not to be a hardware fault, but a mistake in the
hardware setup guide; the position of SW1 was reversed,
causing the board to operate in a completely different
mode.
The SP605 was pre-installed with an example design im-

plementing communication over PCI Express with DMA.
However, the accompanying driver did not support newer
Linux kernels. Additionaly, the design was written in
verilog while CARP is written in VHDL, which meant
extra effort to integrate the two. There was some effort
applied to update the driver, but it was abandoned due to
near-untraceable segfaults.
The USB cable driver for usage of JTAG provided

by Xilinx also had the problem of not being compatible
with newer Linux kernels. Thankfully, a third-party driver
found at [21] is compatible and solves the problem.
For unknown reasons, collisions occur on vital signals

in all post-map and post-place-and-route simulations7,
causing them to be of no use. This makes it impossible
to analyze issues that are present in implementation but
not in post-translate simulation. Since ISE will not respect
the keep_hierarchy8attribute for the unit in which the
collision is first observed, tracing of the source has been
unsuccessful.

B. Future work
The most important thing going forward is to fix the er-

rors that are preventing the sblockmatrix and development
units from working correctly. However, this is no easy task,
as large parts of the design are highly complex and difficult
to debug. The most extreme cases are the development and
LSS units which each consists of a single large file, around
1200 lines long, of complex pipelined code. Simplification
and modularization of these units is therefore imperative.
Another reason to simplify the development unit is it’s

extreme memory bandwidth requirement against the SBM
BRAM. Currently, it is designed so that N rules are loaded,

7 The order of the implementation process is: Synthesize, translate,
map, place-and-route.

8 The keep_hierarchy attribute informs the synthesis tool that it
should not flatten hardware design units to allow further optimiza-
tions. This is useful since the opimizations makes it near-impossible
to trace signals.

applied to every cell, then the N next rules loaded and so
on. This means that the BRAM must supply 5 rows each
cycle to test 1 row per cycle (or 8 for 2) in 3D, while N
rules are needed per matrix iteration. In addition, after
the first pass, center cells has to be read from BRAM B
instead of BRAM A, since they might have changed.

A simplified process is to read 5 rows, apply one rule to
the center row each cycle, then read the next 5 rows, and
so on. This will greatly lessen the bandwidth requirements
against the BRAM, as new rows can be read in sequence
while each rule is being applied to the current. Assuming
there are more rules than the number of rows that must
be read (highly likely), there is no performance loss.
Additionally, this would allow development to only read
from BRAM A, simplifying the dataflow.

There are still some remains of having two clock do-
mains, more specificaly a pair of flipflops used for clock-
synchronization in the fetch and lss units. It does not affect
functionality, and has therefore been of low priority, but it
does add a slight delay between the communication unit
and the fetch and lss units when reading data.

Currently, the platform only supports SBM sizes that
are powers of 2. It would be beneficial to be able to select
any size, allowing for fine-tuning of the resource usage, to
get most out of the FPGA.

As noted in [18], Støvneng increased the base instruction
and data sizes from 32 to 64 bits. Although it is one way to
accomodate for longer instructions, the decision is a little
odd, considering both PCI and PCI Express are based on
32-bit word sizes. This means that conversion is currently
required between the LSS and communication units. Since
only 6 out of 30 instructions require more than 32 bits,
communication could be simplified and optimized by going
back to a 32-bit base size.

The current design makes use of a lot of internal tristate
buffers. These are not supported in modern FPGAs [23],
and therefore need to be converted into other logic during
synthesis. The synthesis tool gently hints at this misuse
by producing several warnings. Removing tristate buffers
will therefore result in code that more closely relates to its
implementation.

Another feature that can beneficially be removed is the
global asynchronous reset. Since all Xilinx FPGAs start in
a well defined state, a reset signal is only needed in very
spesific cases [24] [25]. Otherwise, it only serves to take up
valuable resources.

Having the software interface automaticly adapt to
the implemented hardware platform would be nifty. This
would remove the need to specify the sblock matrix size
and type at compilation. It could be accomplished by
adding an instruction that returns the size of the sblock
matrix.

A feature that could be interesting is the ability to
enable or disable wrap-around for the edges of the sblock
matrix. Disabling it would mean that the size of the matrix
can not be exploited to create an oscillating signal by
something continually moving in one direction.
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Finally, a unification of the 2D and 3D designs would
give a more generic design and allow less code to be
maintained.
With the current need for major fixes, simplification

of development and LSS, reducing the need for extreme
memory bandwidth, removing tristates, removing resets,
and unification, it might be a good idea to rebuild the
platform from the ground up. Starting from a clean slate,
thoroughly evaluating every part of the design, replacing
the bad features and improving the good, will likely result
in a greatly improved platform for CA research.

IX. Conclusion

In this paper, a new hardware platform has been set up.
A PCI Express communication unit has been designed and
implemented in hardware. A corresponding api has been
created in software. It has all been successfully integrated
into the the existing platform.
Unfortunately, verification shows that the recently up-

graded design has a lot of issues. Some issues could be
fixed within the alotted time, but several critical remain.
Neither the sblock matrix nor the development unit is
functional, which means the platform is currently un-
usable. These issues along with a long list of proposed
changes suggest that a major rewrite might be in order.

Appendix A
Test Descriptions

Test Description Verifies
0 Write and read single types WriteType,

ReadType
1 Write and read multiple types WriteTypes,

ReadTypes
2 Write and read single states WriteState,

ReadState
3 Write and read multiple states WriteStates,

ReadStates
4 Write states and types, clear BRAM,

check BRAM is empty
ClearBRAM

5 Write states and types, switch
BRAM, check data is gone, switch
again, check data is back

SwitchSBM

6 Write rules and types, run devstep,
check rules have triggered and types
have updated

DevStep,
WriteRule,
ReadRuleVector,
ReadUsedRules

7 Write and read state to/from sblock-
matrix

Config,
Readback

8 Write states, types and LUTConv,
run sblockmatrix, check states have
changed

Run, WriteLUT-
Conv

9 Store program that prints 1 and then
stops, jump to program address 3
times, check for three 1’s

Store, End,
Jump, Break

10 Execute program that prints 1, runs
devstep and jumps to itself unless 3
devsteps has run, check for three 1’s

JumpEqual, Re-
setDevCounter

Appendix B
Attached Files

Directory structure:
• hardware

– 2D
– 3D
– common

∗ communication
∗ inferers
∗ utility

– ipcore_dir
– sp605

• software
– 2D
– 3D
– common

New files:
• hardware/common/communication

– com40_compatibility_layer.vhd: The compatibil-
ity layer between the control unit and the com-
munication unit.

– communication.vhd: The new communication
module.

– communication_sim.vhd: A "fake" communica-
tion module that provides external access to the
buffers, used to allow simulation.

– rx_engine.vhd: The reception engine, responsible
for parsing TLPs.

– tx_engine.vhd: The transmission engine, respon-
sible for building TLPs.

– rq_special.vhd: The special request handler.
• hardware/common/utility

– combiner.vhd: A module for inserting an entry
into a word, used in the control unit to fix the
WriteState and WriteType bug.

– fifo.vhd: A fifo buffer.
– shifter.vhd: A static shifter, used in the dynamic

shifter.
– shifter_dynamic.vhd: A dynamic shifter, used in

the combiner.
• hardware/ipcore_dir

– sp605_pcie.xise: Project file for the Spartan-6
PCI Express endpoint core.

– sp605_pcie.xco: Core generator file for the
Spartan-6 PCI Express endpoint core.

• hardware/sp605
– constraints.ucf : Timing and placement con-

straints for the SP605.
– constraints_sim.ucf : Timing constraints for sim-

ulation.
– pcie_wrapper.vhd: A wrapper for the Spartan-

6 PCI Express endpoint core to remove all un-
needed signals from cluttering other parts of the
design.

• hardware
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– carp2D.xise: Project file for the 2D design.
– carp2Dsim.xise: Project file for simulation of the

2D design.
– carp3D.xise: Project file for the 3D design.
– carp3Dsim.xise: Project file for simulation of the

3D design.
• software/common

– pci.h: Header file for pci.c
– pci.c: A general interface to find and memory-

map PCI device memory regions.
– sp605.h: Header file for sp605.c
– sp605.c: Provides an open/close/read/write in-

terface towards the communication module im-
plemented on the SP605.

Modified files:
• hardware/2D

– lss.vhd: The LoadSendStore unit; a part of the
control unit.

• hardware/3D
– dev.vhd: The development unit.
– lss.vhd: The LoadSendStore unit; a part of the

control unit.
• software/2D

– read_print.c: Convenience functions for printing
states and types.

– sblocktest.c: Tests.
– sblocklib.h: Header file for sblocklib.h
– sblocklib.c: The main API.

• software/3D
– read_print.c: Convenience functions for printing

states and types.
– sblocktest.c: Tests.
– sblocklib.h: Header file for sblocklib.h
– sblocklib.c: The main API.
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